Модальная логика. Лекция 11: Грамматики и регулярные языки. Грамматические модальные логики. Разрешимость регулярных модальных логик. Фильтрация для грамматических модальных логик.

Евгений Золин

Кафедра математической логики и теории алгоритмов Механико-математический факультет МГУ имени М.В. Ломоносова

04 декабря 2020 года

В лекции будут понятия и результаты на стыке нескольких областей:

- теория формальных языков,
- модальная логика,
- теория алгоритмов.

В лекции будут понятия и результаты на стыке нескольких областей:

- теория формальных языков,
- модальная логика,
- теория алгоритмов.

Откуда в модальной логике — грамматики?

В лекции будут понятия и результаты на стыке нескольких областей:

- теория формальных языков,
- модальная логика,
- теория алгоритмов.

Откуда в модальной логике — грамматики?

Часто встречаются модальные формулы с цепочками □-ов, например:

$$\Box_{a}\Box_{b}\Box_{a}\Box_{c}p \to \Box_{b}\Box_{b}\Box_{c}\Box_{a}p$$

В лекции будут понятия и результаты на стыке нескольких областей:

- теория формальных языков,
- модальная логика,
- теория алгоритмов.

Откуда в модальной логике — грамматики?

Часто встречаются модальные формулы с цепочками □-ов, например:

$$\Box_{a}\Box_{b}\Box_{a}\Box_{c}p \to \Box_{b}\Box_{b}\Box_{c}\Box_{a}p$$

Это «принцип редукции необходимостей» (necessity reduction principle).

В лекции будут понятия и результаты на стыке нескольких областей:

- теория формальных языков,
- модальная логика,
- теория алгоритмов.

Откуда в модальной логике — грамматики?

Часто встречаются модальные формулы с цепочками □-ов, например:

$$\square_a\square_b\square_a\square_c p \to \square_b\square_b\square_c\square_a p$$

Это «принцип редукции необходимостей» (necessity reduction principle).

Очевидно, что есть связь с преобразованием слов: $abac \mapsto bbca$.

В лекции будут понятия и результаты на стыке нескольких областей:

- теория формальных языков,
- модальная логика,
- теория алгоритмов.

Откуда в модальной логике — грамматики?

Часто встречаются модальные формулы с цепочками □-ов, например:

$$\square_a\square_b\square_a\square_c p \to \square_b\square_b\square_c\square_a p$$

Это «принцип редукции необходимостей» (necessity reduction principle).

Очевидно, что есть связь с преобразованием слов: $abac \mapsto bbca$.

Отступление: ван Бентем [1] изучал формулы $\[\mathbb{L}_1 p \to \mathbb{L}_2 p, \]$ где $\[\mathbb{L}_i - \mathbb{L}_i p \to \mathbb{L}_i p \to \mathbb{L}_i p \to \mathbb{L}_i p$ любые цепочки $\[\mathbb{L}_i - \mathbb{L}_i p \to \mathbb{L}_i p \to \mathbb{L}_i p \to \mathbb{L}_i p$ любые цепочки $\[\mathbb{L}_i - \mathbb{L}_i p \to \mathbb{L}_i p \to \mathbb{L}_i p \to \mathbb{L}_i p$ любые цепочки $\[\mathbb{L}_i - \mathbb{L}_i p \to \mathbb{L}_i p$ любые цепочки $\[\mathbb{L}_i p \to \mathbb$

В лекции будут понятия и результаты на стыке нескольких областей:

- теория формальных языков,
- модальная логика,
- теория алгоритмов.

Откуда в модальной логике — грамматики?

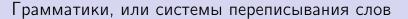
Часто встречаются модальные формулы с цепочками \square -ов, например:

$$\Box_{a}\Box_{b}\Box_{a}\Box_{c}p \to \Box_{b}\Box_{b}\Box_{c}\Box_{a}p$$

Это «принцип редукции необходимостей» (necessity reduction principle).

Очевидно, что есть связь с преобразованием слов: $abac \mapsto bbca$.

Отступление: ван Бентем [1] изучал формулы $\[\mathbb{L}_1 p \to \mathbb{L}_2 p, \]$ где $\[\mathbb{L}_i - \mathbb{L}_j p \to \mathbb{L}_j p$



 Σ — конечный алфавит (непустое множество букв).

 Σ — конечный алфавит (непустое множество букв). Σ^+ — множество всех непустых слов в алфавите Σ .

- Σ конечный алфавит (непустое множество букв).
- Σ^+ множество всех непустых слов в алфавите Σ .
- Σ^* множество всех слов в алфавите Σ , включая пустое слово ε .

```
\Sigma — конечный алфавит (непустое множество букв).
```

 Σ^+ — множество всех непустых слов в алфавите Σ .

 Σ^* — множество всех слов в алфавите Σ , включая пустое слово arepsilon.

Определение (Система переписывания слов, полу-система Туэ, string rewriting system, semi-Thue system, = semi-(Thue system))

```
\Sigma — конечный алфавит (непустое множество букв).
```

 Σ^+ — множество всех непустых слов в алфавите Σ .

 Σ^* — множество всех слов в алфавите Σ , включая пустое слово arepsilon.

Определение (Система переписывания слов, полу-система Туэ, string rewriting system, semi-Thue system, = semi-(Thue system))

Или (в нашей лекции просто) грамматика — это любое двуместное отношение на словах, то есть подмножество $\Pi \subseteq (\Sigma^* \times \Sigma^*)$.

```
\Sigma — конечный алфавит (непустое множество букв).
```

 Σ^+ — множество всех непустых слов в алфавите Σ .

 Σ^* — множество всех слов в алфавите Σ , включая пустое слово ε .

Определение (Система переписывания слов, полу-система Туэ, string rewriting system, semi-Thue system, = semi-(Thue system))

Или (в нашей лекции просто) грамматика — это любое двуместное отношение на словах, то есть подмножество $\Pi \subseteq (\Sigma^* \times \Sigma^*)$.

Если Π — симметричное отношение, то оно называется системой Туэ.

 Σ — конечный алфавит (непустое множество букв).

 Σ^+ — множество всех непустых слов в алфавите Σ .

 Σ^* — множество всех слов в алфавите Σ , включая пустое слово ε .

Определение (Система переписывания слов, полу-система Туэ, string rewriting system, semi-Thue system, = semi-(Thue system))

Или (в нашей лекции просто) грамматика — это любое двуместное отношение на словах, то есть подмножество $\Pi \subseteq (\Sigma^* \times \Sigma^*)$.

Если Π — симметричное отношение, то оно называется системой Туэ.

Обычно П будет конечным, но некот. результаты верны для любых П.

 Σ — конечный алфавит (непустое множество букв).

 Σ^+ — множество всех непустых слов в алфавите Σ .

 Σ^* — множество всех слов в алфавите Σ , включая пустое слово ε .

Определение (Система переписывания слов, полу-система Туэ, string rewriting system, semi-Thue system, = semi-(Thue system))

Или (в нашей лекции просто) грамматика — это любое двуместное отношение на словах, то есть подмножество $\Pi \subseteq (\Sigma^* \times \Sigma^*)$.

Если Π — симметричное отношение, то оно называется системой Туэ.

Обычно П будет конечным, но некот. результаты верны для любых П.

Пары слов из грамматики $(\alpha,\beta)\in\Pi$ часто записывают так: $\alpha\to\beta$.

 Σ — конечный алфавит (непустое множество букв).

 Σ^+ — множество всех непустых слов в алфавите Σ .

 Σ^* — множество всех слов в алфавите Σ , включая пустое слово ε .

Определение (Система переписывания слов, полу-система Туэ, string rewriting system, semi-Thue system, = semi-(Thue system))

Или (в нашей лекции просто) грамматика — это любое двуместное отношение на словах, то есть подмножество $\Pi \subseteq (\Sigma^* \times \Sigma^*)$.

Если Π — симметричное отношение, то оно называется системой Туэ.

Обычно П будет конечным, но некот. результаты верны для любых П.

Пары слов из грамматики $(\alpha,\beta)\in\Pi$ часто записывают так: $\alpha\to\beta$.

Эти пары часто называют правилами или продукциями.

Дана грамматика П — множество правил $\alpha \to \beta$, где $\alpha, \beta \in \Sigma^*$.

Дана грамматика П — множество правил $\alpha \to \beta$, где $\alpha, \beta \in \Sigma^*$.

Определение (Выводимость за 1 шаг в грамматике)

Если $(\alpha \to \beta) \in \Pi$, то пишем $X\alpha Y \stackrel{\Pi}{\longmapsto} X\beta Y$ для любых слов X,Y.

Дана грамматика Π — множество правил $\alpha \to \beta$, где $\alpha, \beta \in \Sigma^*$.

Определение (Выводимость за 1 шаг в грамматике)

Если $(\alpha \to \beta) \in \Pi$, то пишем $X \alpha Y \stackrel{\Pi}{\longmapsto} X \beta Y$ для любых слов X, Y.

Говорим: из слова $u = X \alpha Y$ выводится за 1 шаг слово $v = X \beta Y$.

Дана грамматика Π — множество правил $\alpha \to \beta$, где $\alpha, \beta \in \Sigma^*$.

Определение (Выводимость за 1 шаг в грамматике)

Если $(\alpha \to \beta) \in \Pi$, то пишем $X\alpha Y \stackrel{\Pi}{\longmapsto} X\beta Y$ для любых слов X, Y.

Говорим: из слова $u = X\alpha Y$ выводится за 1 шаг слово $v = X\beta Y$.

Определение (Выводимость в грамматике)

Из слова u выводится слово v в грамматике Π , пишем $u \stackrel{\Pi}{\Longrightarrow} v$, если u = v или

Дана грамматика Π — множество правил lpha
ightarrow eta, где $lpha, eta \in \Sigma^*$.

Определение (Выводимость за 1 шаг в грамматике)

Если $(\alpha \to \beta) \in \Pi$, то пишем $X\alpha Y \stackrel{\Pi}{\longmapsto} X\beta Y$ для любых слов X,Y.

Говорим: из слова $u = X\alpha Y$ выводится за 1 шаг слово $v = X\beta Y$.

Определение (Выводимость в грамматике)

Из слова u выводится слово v в грамматике Π , пишем $u \stackrel{\Pi}{\Longrightarrow} v$, если u=v или существует цепочка из $n\geqslant 1$ одношаговых выводимостей:

$$u = x_0 \stackrel{\sqcap}{\longmapsto} x_1 \stackrel{\sqcap}{\longmapsto} \dots \stackrel{\sqcap}{\longmapsto} x_n = v.$$

Дана грамматика Π — множество правил lpha
ightarrow eta, где $lpha, eta \in \Sigma^*$.

Определение (Выводимость за 1 шаг в грамматике)

Если $(\alpha \to \beta) \in \Pi$, то пишем $X\alpha Y \stackrel{\Pi}{\longmapsto} X\beta Y$ для любых слов X, Y.

Говорим: из слова $u = X\alpha Y$ выводится за 1 шаг слово $v = X\beta Y$.

Определение (Выводимость в грамматике)

Из слова u выводится слово v в грамматике Π , пишем $u \stackrel{\Pi}{\Longrightarrow} v$, если u=v или существует цепочка из $n\geqslant 1$ одношаговых выводимостей:

$$u = x_0 \stackrel{\sqcap}{\longmapsto} x_1 \stackrel{\sqcap}{\longmapsto} \dots \stackrel{\sqcap}{\longmapsto} x_n = v.$$

Иначе говоря, $\stackrel{\Pi}{\Longrightarrow}$ есть рефлексивное транзитивное замыкание $\stackrel{\Pi}{\longmapsto}$.

Дана грамматика Π — множество правил lpha
ightarrow eta, где $lpha, eta \in \Sigma^*$.

Определение (Выводимость за 1 шаг в грамматике)

Если $(\alpha \to \beta) \in \Pi$, то пишем $X\alpha Y \Rightarrow_{\Pi} X\beta Y$ для любых слов X, Y.

Говорим: из слова $u = X\alpha Y$ выводится за 1 шаг слово $v = X\beta Y$.

Определение (Выводимость в грамматике)

Из слова u выводится слово v в грамматике Π , пишем $u \Rightarrow_{\Pi}^* v$, если u = v или существует цепочка из $n \geqslant 1$ одношаговых выводимостей:

$$u = x_0 \stackrel{\sqcap}{\longmapsto} x_1 \stackrel{\sqcap}{\longmapsto} \dots \stackrel{\sqcap}{\longmapsto} x_n = v.$$

Иначе говоря, $\stackrel{\Pi}{\Longrightarrow}$ есть рефлексивное транзитивное замыкание $\stackrel{\Pi}{\longmapsto}$.

Полимодальный язык с модальностями \square_a , где $a \in \Sigma$ (Лекция 4).

Полимодальный язык с модальностями \square_a , где $a \in \Sigma$ (Лекция 4). Слову $\alpha = a_1 \dots a_n$ сопоставим модальность: $\square_{\alpha} := \square_{a_1} \dots \square_{a_n}$.

Полимодальный язык с модальностями \square_a , где $a \in \Sigma$ (Лекция 4). Слову $\alpha = a_1 \dots a_n$ сопоставим модальность: $\square_\alpha := \square_{a_1} \dots \square_{a_n}$.

Шкала (Σ -шкала): $F=(W,(R_a)_{a\in\Sigma})$. Обозн. $R_{\alpha}:=R_{a_1}\circ\ldots\circ R_{a_n}$.

Полимодальный язык с модальностями \square_a , где $a \in \Sigma$ (Лекция 4). Слову $\alpha = a_1 \dots a_n$ сопоставим модальность: $\square_\alpha := \square_{a_1} \dots \square_{a_n}$. Шкала (Σ -шкала): $F = (W, (R_a)_{a \in \Sigma})$. Обозн. $R_\alpha := R_{a_1} \circ \dots \circ R_{a_n}$. $M, x \models \square_\alpha A \Leftrightarrow$ для всех y, таких что $x R_\alpha y$, имеем $M, y \models A$.

Полимодальный язык с модальностями \square_a , где $a \in \Sigma$ (Лекция 4). Слову $\alpha = a_1 \dots a_n$ сопоставим модальность: $\square_\alpha := \square_{a_1} \dots \square_{a_n}$. Шкала (Σ -шкала): $F = (W, (R_a)_{a \in \Sigma})$. Обозн. $R_\alpha := R_{a_1} \circ \dots \circ R_{a_n}$. $M, x \models \square_\alpha A \Leftrightarrow$ для всех y, таких что $x R_\alpha y$, имеем $M, y \models A$.

Принцип редукции необходимостей: $\Box_{\alpha} p \to \Box_{\beta} p$, где слова $\alpha, \beta \in \Sigma^*$.

Полимодальный язык с модальностями \square_a , где $a \in \Sigma$ (Лекция 4).

Слову $\alpha = a_1 \dots a_n$ сопоставим модальность: $\square_{\alpha} := \square_{a_1} \dots \square_{a_n}$. Шкала (Σ -шкала): $F = (W, (R_a)_{a \in \Sigma})$. Обозн. $R_{\alpha} := R_{a_1} \circ \dots \circ R_{a_n}$.

 $M,x\models\Box_{\alpha}A$ \Leftrightarrow для всех y, таких что $x\,R_{\alpha}\,y$, имеем $M,y\models A$.

Принцип редукции необходимостей: $\square_{\alpha} p \to \square_{\beta} p$, где слова $\alpha, \beta \in \Sigma^*$.

Это частный случай $(\gamma,\alpha,\beta,\delta)$ -формул $\Diamond_{\gamma}\Box_{\alpha} p \to \Box_{\beta}\Diamond_{\delta} p$ из Лекции 4.

Полимодальный язык с модальностями \square_a , где $a \in \Sigma$ (Лекция 4). Слову $\alpha = a_1 \dots a_n$ сопоставим модальность: $\square_\alpha := \square_{a_1} \dots \square_{a_n}$. Шкала (Σ -шкала): $F = (W, (R_a)_{a \in \Sigma})$. Обозн. $R_\alpha := R_{a_1} \circ \dots \circ R_{a_n}$. $M, x \models \square_\alpha A \Leftrightarrow$ для всех y, таких что $x R_\alpha y$, имеем $M, y \models A$. Принцип редукции необходимостей: $\square_\alpha p \to \square_\beta p$, где слова $\alpha, \beta \in \Sigma^*$.

Это частный случай $(\gamma,\alpha,\beta,\delta)$ -формул $\Diamond_{\gamma}\Box_{\alpha} p \to \Box_{\beta}\Diamond_{\delta} p$ из Лекции 4.

Лемма (Семантика принципов редукции)

Для всякой шкалы F имеем:

$$F \models \Box_{\alpha} p \rightarrow \Box_{\beta} p \iff R_{\alpha} \supseteq R_{\beta}.$$

Полимодальный язык с модальностями \square_a , где $a \in \Sigma$ (Лекция 4).

Слову $\alpha = a_1 \dots a_n$ сопоставим модальность: $\square_{\alpha} := \square_{a_1} \dots \square_{a_n}$ Шкала (Σ -шкала): $F = (W, (R_a)_{a \in \Sigma})$. Обозн. $R_{\alpha} := R_{a_1} \circ \ldots \circ R_{a_n}$.

 $M,x \models \Box_{\alpha}A \;\;\Leftrightarrow\;\;$ для всех y, таких что $x R_{\alpha} y$, имеем $M,y \models A$.

Принцип редукции необходимостей: $\square_{\alpha} p \to \square_{\beta} p$, где слова $\alpha, \beta \in \Sigma^*$.

Это частный случай $(\gamma, \alpha, \beta, \delta)$ -формул $\Diamond_{\gamma} \Box_{\alpha} p \to \Box_{\beta} \Diamond_{\delta} p$ из Лекции 4.

Лемма (Семантика принципов редукции)

Для всякой шкалы F имеем:

$$F \models \Box_{\alpha} p \rightarrow \Box_{\beta} p \Leftrightarrow R_{\alpha} \supseteq R_{\beta}.$$

В терминах редукций возможностей: $F \models \Diamond_{\alpha} p \rightarrow \Diamond_{\beta} p \Leftrightarrow R_{\alpha} \subseteq R_{\beta}$.

$$F \models \Diamond_{\alpha} p \rightarrow \Diamond_{\beta} p \iff R_{\alpha} \subseteq R_{\beta}.$$

Полимодальный язык с модальностями \square_a , где $a \in \Sigma$ (Лекция 4). Слову $\alpha = a_1 \dots a_n$ сопоставим модальность: $\square_{\alpha} := \square_{a_1} \dots \square_{a_n}$ Шкала (Σ -шкала): $F = (W, (R_a)_{a \in \Sigma})$. Обозн. $R_{\alpha} := R_{a_1} \circ \ldots \circ R_{a_n}$. $M, x \models \Box_{\alpha} A \Leftrightarrow \exists_{\alpha} A \Leftrightarrow \exists_{\alpha}$ Принцип редукции необходимостей: $\square_{\alpha} p \to \square_{\beta} p$, где слова $\alpha, \beta \in \Sigma^*$.

Это частный случай $(\gamma, \alpha, \beta, \delta)$ -формул $\Diamond_{\gamma} \Box_{\alpha} p \to \Box_{\beta} \Diamond_{\delta} p$ из Лекции 4.

Лемма (Семантика принципов редукции)

Для всякой шкалы F имеем:

$$F \models \Box_{\alpha} p \rightarrow \Box_{\beta} p \iff R_{\alpha} \supseteq R_{\beta}.$$

В терминах редукций возможностей: $F \models \Diamond_{\alpha} p \rightarrow \Diamond_{\beta} p \Leftrightarrow R_{\alpha} \subseteq R_{\beta}$.

$$\exists \models \Diamond_{\alpha} p \rightarrow \Diamond_{\beta} p \Leftrightarrow R_{\alpha} \subseteq R_{\beta}$$

Доказательство (леммы в исходном виде — с \square).

$$(\Leftarrow)$$
 Пусть $M, x \models \Box_{\alpha} p$.

Полимодальный язык с модальностями \square_a , где $a \in \Sigma$ (Лекция 4). Слову $\alpha = a_1 \dots a_n$ сопоставим модальность: $\square_{\alpha} := \square_{a_1} \dots \square_{a_n}$ Шкала (Σ -шкала): $F = (W, (R_a)_{a \in \Sigma})$. Обозн. $R_{\alpha} := R_{a_1} \circ \ldots \circ R_{a_n}$. $M, x \models \Box_{\alpha} A \Leftrightarrow \exists_{\alpha} A \Leftrightarrow \exists_{\alpha}$ Принцип редукции необходимостей: $\square_{\alpha} p \to \square_{\beta} p$, где слова $\alpha, \beta \in \Sigma^*$.

Это частный случай $(\gamma, \alpha, \beta, \delta)$ -формул $\Diamond_{\gamma} \Box_{\alpha} p \to \Box_{\beta} \Diamond_{\delta} p$ из Лекции 4.

Лемма (Семантика принципов редукции)

Для всякой шкалы F имеем:

$$F \models \Box_{\alpha} p \rightarrow \Box_{\beta} p \iff R_{\alpha} \supseteq R_{\beta}.$$

В терминах редукций возможностей: $F \models \Diamond_{\alpha} p \rightarrow \Diamond_{\beta} p \Leftrightarrow R_{\alpha} \subseteq R_{\beta}$.

$$F \models \Diamond_{\alpha} p \rightarrow \Diamond_{\beta} p \Leftrightarrow R_{\alpha} \subseteq R_{\beta}$$

Доказательство (леммы в исходном виде — с \square).

$$(\Leftarrow)$$
 Пусть $M, x \models \Box_{\alpha} p$.Почему $M, x \models \Box_{\beta} p$?

Полимодальный язык с модальностями \square_a , где $a \in \Sigma$ (Лекция 4). Слову $\alpha = a_1 \dots a_n$ сопоставим модальность: $\square_{\alpha} := \square_{a_1} \dots \square_{a_n}$ Шкала (Σ -шкала): $F = (W, (R_a)_{a \in \Sigma})$. Обозн. $R_{\alpha} := R_{a_1} \circ \ldots \circ R_{a_n}$. $M, x \models \Box_{\alpha} A \;\;\Leftrightarrow\;\;$ для всех y, таких что $x R_{\alpha} y$, имеем $M, y \models A$.

Принцип редукции необходимостей: $\square_{\alpha} p \to \square_{\beta} p$, где слова $\alpha, \beta \in \Sigma^*$. Это частный случай $(\gamma, \alpha, \beta, \delta)$ -формул $\Diamond_{\gamma} \Box_{\alpha} p \to \Box_{\beta} \Diamond_{\delta} p$ из Лекции 4.

Лемма (Семантика принципов редукции)

Для всякой шкалы F имеем:

$$F \models \Box_{\alpha} p \rightarrow \Box_{\beta} p \iff R_{\alpha} \supseteq R_{\beta}.$$

В терминах редукций возможностей: $F \models \Diamond_{\alpha} p \rightarrow \Diamond_{\beta} p \Leftrightarrow R_{\alpha} \subseteq R_{\beta}$.

$$F \models \Diamond_{\alpha} p \rightarrow \Diamond_{\beta} p \iff R_{\alpha} \subseteq R_{\beta}.$$

Доказательство (леммы в исходном виде — с \square).

 (\Leftarrow) Пусть $M, x \models \Box_{\alpha} p$.Почему $M, x \models \Box_{\beta} p$? Ввиду $R_{\alpha}(x) \supseteq R_{\beta}(x)$.

Принципы редукции необходимостей

Полимодальный язык с модальностями \square_a , где $a \in \Sigma$ (Лекция 4).

Слову $\alpha = a_1 \dots a_n$ сопоставим модальность: $\square_{\alpha} := \square_{a_1} \dots \square_{a_n}$

Шкала (Σ -шкала): $F = (W, (R_a)_{a \in \Sigma})$. Обозн. $R_{\alpha} := R_{a_1} \circ \ldots \circ R_{a_n}$.

 $M, x \models \Box_{\alpha} A \Leftrightarrow \exists_{\alpha} A \Leftrightarrow \exists_{\alpha}$

Принцип редукции необходимостей: $\square_{\alpha} p \to \square_{\beta} p$, где слова $\alpha, \beta \in \Sigma^*$. Это частный случай $(\gamma, \alpha, \beta, \delta)$ -формул $\Diamond_{\gamma} \Box_{\alpha} p \to \Box_{\beta} \Diamond_{\delta} p$ из Лекции 4.

Лемма (Семантика принципов редукции)

Для всякой шкалы F имеем:

$$F \models \Box_{\alpha} p \rightarrow \Box_{\beta} p \iff R_{\alpha} \supseteq R_{\beta}.$$

В терминах редукций возможностей: $F \models \Diamond_{\alpha} p \rightarrow \Diamond_{\beta} p \Leftrightarrow R_{\alpha} \subseteq R_{\beta}$.

$$F \models \Diamond_{\alpha} p \rightarrow \Diamond_{\beta} p \Leftrightarrow R_{\alpha} \subseteq R_{\beta}$$

Доказательство (леммы в исходном виде — с \square).

 (\Leftarrow) Пусть $M, x \models \Box_{\alpha} p$.Почему $M, x \models \Box_{\beta} p$? Ввиду $R_{\alpha}(x) \supseteq R_{\beta}(x)$.

(⇒) Допустим $R_{\alpha} \not\supseteq R_{\beta}$. Значит, $\exists x, y \in W$: $\neg (x R_{\alpha} y)$, но $(x R_{\beta} y)$.

Принципы редукции необходимостей

Полимодальный язык с модальностями \square_a , где $a \in \Sigma$ (Лекция 4).

Слову $\alpha=a_1\dots a_n$ сопоставим модальность: $\square_{\alpha}:=\square_{a_1}\dots\square_{a_n}$.

Шкала (Σ -шкала): $F=(W,(R_a)_{a\in\Sigma})$. Обозн. $R_{\alpha}:=R_{a_1}\circ\ldots\circ R_{a_n}$.

 $M,x\models\Box_{\alpha}A$ \Leftrightarrow для всех y, таких что x R_{α} y, имеем $M,y\models A$. Принцип редукции необходимостей: $\Box_{\alpha}p\to\Box_{\beta}p$, где слова $\alpha,\beta\in\Sigma^*$.

Это частный случай $(\gamma,\alpha,\beta,\delta)$ -формул $\Diamond_{\gamma}\Box_{\alpha} p \to \Box_{\beta}\Diamond_{\delta} p$ из Лекции 4.

Лемма (Семантика принципов редукции)

Для всякой шкалы F имеем:

$$F \models \Box_{\alpha} p \to \Box_{\beta} p \iff R_{\alpha} \supseteq R_{\beta}.$$

В терминах редукций возможностей: $F\models\lozenge_{lpha} extbf{p}\to\lozenge_{eta} extbf{p} \iff R_{lpha}\subseteq R_{eta}.$

Доказательство (леммы в исходном виде — c \square).

- (\Leftarrow) Пусть $M,x\models\Box_{\alpha} p$.Почему $M,x\models\Box_{\beta} p$? Ввиду $R_{\alpha}(x)\supseteq R_{\beta}(x)$.
- (\Rightarrow) Допустим $R_{\alpha} \not\supseteq R_{\beta}$. Значит, $\exists x, y \in W : \neg(x R_{\alpha} y)$, но $(x R_{\beta} y)$. Берем оценку: $V(p) := W \setminus \{y\}$.

Принципы редукции необходимостей

Полимодальный язык с модальностями \square_a , где $a \in \Sigma$ (Лекция 4).

Слову $\alpha=a_1\dots a_n$ сопоставим модальность: $\square_{\alpha}:=\square_{a_1}\dots\square_{a_n}$.

Шкала (Σ -шкала): $F = (W, (R_a)_{a \in \Sigma})$. Обозн. $R_{\alpha} := R_{a_1} \circ \ldots \circ R_{a_n}$.

 $M,x\models\Box_{\alpha}A$ \Leftrightarrow для всех y, таких что x R_{α} y, имеем $M,y\models A$. Принцип редукции необходимостей: $\Box_{\alpha}p\to\Box_{\beta}p$, где слова $\alpha,\beta\in\Sigma^*$.

Это частный случай $(\gamma,\alpha,\beta,\delta)$ -формул $\Diamond_{\gamma}\Box_{\alpha} p \to \Box_{\beta}\Diamond_{\delta} p$ из Лекции 4.

Лемма (Семантика принципов редукции)

Для всякой шкалы F имеем:

$$F \models \Box_{\alpha} p \rightarrow \Box_{\beta} p \Leftrightarrow R_{\alpha} \supseteq R_{\beta}.$$

В терминах редукций возможностей: $F\models\lozenge_{lpha} p \to \lozenge_{eta} p \iff R_{lpha}\subseteq R_{eta}.$

Доказательство (леммы в исходном виде — с \square).

- (\Leftarrow) Пусть $M,x\models\Box_{\alpha}p$.Почему $M,x\models\Box_{\beta}p$? Ввиду $R_{\alpha}(x)\supseteq R_{\beta}(x)$.
- (\Rightarrow) Допустим $R_{\alpha} \not\supseteq R_{\beta}$. Значит, $\exists x, y \in W \colon \neg(x R_{\alpha} y)$, но $(x R_{\beta} y)$. Берем оценку: $V(p) := W \setminus \{y\}$. Тогда $M, x \models \Box_{\alpha} p$ и $M, x \not\models \Box_{\beta} p$.

Минимальная нормальная полимодальная логика с модальностями $\{ \Box_a \mid a \in \Sigma \}$ будет обозначаться K_{Σ} (или K_n , где $|\Sigma| = n$).

Минимальная нормальная полимодальная логика с модальностями $\{ \Box_a \mid a \in \Sigma \}$ будет обозначаться K_{Σ} (или K_n , где $|\Sigma| = n$).

Пусть $\Pi \subseteq (\Sigma^* \times \Sigma^*)$ — грамматика, т.е. набор правил вида $(\alpha \to \beta)$.

Минимальная нормальная полимодальная логика с модальностями $\{ \Box_a \mid a \in \Sigma \}$ будет обозначаться K_{Σ} (или K_n , где $|\Sigma| = n$).

Пусть П \subseteq ($\Sigma^* \times \Sigma^*$) — грамматика, т.е. набор правил вида ($\alpha \to \beta$).

Определение

Грамматическая модальная логика, соответствующая грамматике П:

$$\mathsf{K}\Pi := \mathsf{K}_{\Sigma} \oplus \{ \Box_{\alpha} \mathsf{p} \to \Box_{\beta} \mathsf{p} \mid (\alpha \to \beta) \in \Pi \}.$$

Минимальная нормальная полимодальная логика с модальностями $\{ \Box_a \mid a \in \Sigma \}$ будет обозначаться K_{Σ} (или K_n , где $|\Sigma| = n$).

Пусть П \subseteq ($\Sigma^* \times \Sigma^*$) — грамматика, т.е. набор правил вида (lpha o eta).

Определение

Грамматическая модальная логика, соответствующая грамматике П:

$$\mathsf{K}\Pi := \mathsf{K}_{\Sigma} \oplus \{ \Box_{\alpha} \mathsf{p} \to \Box_{\beta} \mathsf{p} \mid (\alpha \to \beta) \in \Pi \}.$$

•
$$K4 = K \oplus (\Box p \rightarrow \Box \Box p)$$

Минимальная нормальная полимодальная логика с модальностями $\{ \Box_a \mid a \in \Sigma \}$ будет обозначаться K_{Σ} (или K_n , где $|\Sigma| = n$).

Пусть П \subseteq ($\Sigma^* \times \Sigma^*$) — грамматика, т.е. набор правил вида ($\alpha \to \beta$).

Определение

Грамматическая модальная логика, соответствующая грамматике П:

$$\mathsf{K}\Pi := \mathsf{K}_{\Sigma} \oplus \{ \Box_{\alpha} \mathsf{p} \to \Box_{\beta} \mathsf{p} \mid (\alpha \to \beta) \in \Pi \}.$$

$$ullet$$
 K4 $=$ K \oplus ($\Box p
ightarrow \Box \Box p$) $=$ KП для грамматики П $=$ { $a
ightarrow aa$ }.

Минимальная нормальная полимодальная логика с модальностями $\{ \Box_a \mid a \in \Sigma \}$ будет обозначаться K_{Σ} (или K_n , где $|\Sigma| = n$).

Пусть П \subseteq ($\Sigma^* \times \Sigma^*$) — грамматика, т.е. набор правил вида (lpha o eta).

Определение

Грамматическая модальная логика, соответствующая грамматике П:

$$\mathsf{K}\Pi := \mathsf{K}_{\Sigma} \oplus \{ \Box_{\alpha} \mathsf{p} \to \Box_{\beta} \mathsf{p} \mid (\alpha \to \beta) \in \Pi \}.$$

- ullet K4 = K \oplus ($\Box p
 ightarrow \Box \Box p$) = KП для грамматики П = { a
 ightarrow aa }.
- S4 = K4 \oplus { $\square p \rightarrow p$ }

Минимальная нормальная полимодальная логика с модальностями $\{ \Box_a \mid a \in \Sigma \}$ будет обозначаться K_{Σ} (или K_n , где $|\Sigma| = n$).

Пусть П \subseteq $(\Sigma^* \times \Sigma^*)$ — грамматика, т.е. набор правил вида $(\alpha o \beta)$.

Определение

Грамматическая модальная логика, соответствующая грамматике П:

$$\mathsf{K}\Pi := \mathsf{K}_{\Sigma} \oplus \{ \Box_{\alpha} \mathsf{p} \to \Box_{\beta} \mathsf{p} \mid (\alpha \to \beta) \in \Pi \}.$$

- ullet K4 = K \oplus ($\Box p
 ightarrow \Box \Box p$) = KП для грамматики П = { a
 ightarrow aa }.
- ullet S4 = K4 \oplus { $\Box p
 ightarrow p$ } = K Π для граммат. $\Pi =$ { $a
 ightarrow aa, \ a
 ightarrow arepsilon$ }.

Минимальная нормальная полимодальная логика с модальностями $\{ \Box_a \mid a \in \Sigma \}$ будет обозначаться K_{Σ} (или K_n , где $|\Sigma| = n$).

Пусть П \subseteq ($\Sigma^* \times \Sigma^*$) — грамматика, т.е. набор правил вида (lpha o eta).

Определение

Грамматическая модальная логика, соответствующая грамматике П:

$$\mathsf{K}\Pi := \mathsf{K}_{\Sigma} \oplus \{ \Box_{\alpha} \mathsf{p} \to \Box_{\beta} \mathsf{p} \mid (\alpha \to \beta) \in \Pi \}.$$

- ullet K4 = K \oplus ($\Box p
 ightarrow \Box \Box p$) = KП для грамматики П = { a
 ightarrow aa }.
- ullet S4 = K4 \oplus { $\Box p
 ightarrow p$ } = K Π для граммат. $\Pi =$ { $a
 ightarrow aa, \ a
 ightarrow arepsilon$ }.
- Грамматическими являются логики
 - с аксиомами $\Box p \to \Box^n \Box p$ (*n*-транзитивность)

Минимальная нормальная полимодальная логика с модальностями $\{ \Box_a \mid a \in \Sigma \}$ будет обозначаться K_{Σ} (или K_n , где $|\Sigma| = n$).

Пусть П \subseteq ($\Sigma^* \times \Sigma^*$) — грамматика, т.е. набор правил вида ($\alpha \to \beta$).

Определение

Грамматическая модальная логика, соответствующая грамматике П:

$$\mathsf{K}\Pi := \mathsf{K}_{\Sigma} \oplus \{ \Box_{\alpha} \mathsf{p} \to \Box_{\beta} \mathsf{p} \mid (\alpha \to \beta) \in \Pi \}.$$

- ullet K4 = K \oplus ($\Box p
 ightarrow \Box \Box p$) = KП для грамматики П = { a
 ightarrow aa }.
- ullet S4 = K4 \oplus { $\square p
 ightarrow p$ } = K Π для граммат. $\Pi = \{ \ a
 ightarrow aa, \ a
 ightarrow arepsilon \}.$
- Грамматическими являются логики
 - с аксиомами $\Box p \to \Box^n \Box p$ (*n*-транзитивность)
 - с аксиомой $\Box\Box p o \Box p$ (плотность)

Минимальная нормальная полимодальная логика с модальностями $\{ \Box_a \mid a \in \Sigma \}$ будет обозначаться K_{Σ} (или K_n , где $|\Sigma| = n$).

Пусть П \subseteq ($\Sigma^* \times \Sigma^*$) — грамматика, т.е. набор правил вида ($\alpha \to \beta$).

Определение

Грамматическая модальная логика, соответствующая грамматике П:

$$\mathsf{K}\Pi \ := \ \mathsf{K}_{\Sigma} \ \oplus \ \{ \square_{\alpha} \mathsf{p} \to \square_{\beta} \mathsf{p} \ | \ (\alpha \to \beta) \in \Pi \}.$$

- ullet K4 = K \oplus ($\Box p
 ightarrow \Box \Box p$) = KП для грамматики П = { a
 ightarrow aa }.
- ullet S4 = K4 \oplus { $\square p
 ightarrow p$ } = K Π для граммат. $\Pi = \{ \ a
 ightarrow aa, \ a
 ightarrow arepsilon \}.$
- Грамматическими являются логики
 - с аксиомами $\Box p
 ightarrow \Box^n \Box p$ (n-транзитивность)
 - с аксиомой $\Box\Box p o \Box p$ (плотность)
 - с аксиомой $\Box\Box p \to \Box\Box\Box p$ (вопрос о ее разрешимости открыт!)

- Грамматические модальные логики впервые изучались в работе:
- 1988 L. Fariñas del Cerro, M. Penttonen. "Grammar logics". Logique et Analyse.

- Грамматические модальные логики впервые изучались в работе:
- **1988** L. Fariñas del Cerro, M. Penttonen. "Grammar logics". *Logique et Analyse*.
 - Результаты о неразрешимости (в том числе для полимодальных логик с обратными модальностями) получены в работе:
- **1995** A. Chagrov, V. Shehtman. "Algorithmic aspects of propositional tense logics". *Computer Science Logic Workshop 1994*.

- Грамматические модальные логики впервые изучались в работе:

 1988 L. Fariñas del Cerro, M. Penttonen. "Grammar logics". Logique et Analyse.
- Результаты о неразрешимости (в том числе для полимодальных логик с обратными модальностями) получены в работе:
- **1995** A. Chagrov, V. Shehtman. "Algorithmic aspects of propositional tense logics". *Computer Science Logic Workshop 1994*.
 - Разрешимость и сложность регулярных грамматических логик:
- 1998 M. Baldoni, L. Giordano, A. Martelli. "A tableau calculus for multimodal logics and some (un)decidability results". *TABLEAUX '98*.
- **2001** S. Demri. "The complexity of regularity in grammar logics and related modal logics", *Journal of Logic and Computation*.
- 2005 S. Demri, H. de Nivelle. "Deciding regular grammar logics with converse through first-order logic." *Journal of Logic, Language and Information*.
- 2005 R. Goré, L. Nguyen. "A tableau system with automaton-labelled formulae for regular grammar logics". TABLEAUX 2005.
 - Фильтрация для регулярных грамматических логик:
- **2014** S. Kikot, I. Shapirovsky, E. Zolin. "Filtration safe operations on frames". *Advances in Modal Logic 2014*.

Теорема (О полноте по Крипке грамматических логик)

Для всякой грамматики Π , логика $\mathsf{K}\Pi$ каноническая \Rightarrow полная.

Теорема (О полноте по Крипке грамматических логик)

Для всякой грамматики Π , логика $\mathsf{K}\Pi$ каноническая \Rightarrow полная.

Это доказано для логик с любыми $(\gamma, \alpha, \beta, \delta)$ -аксиомами в Лекции 4.

Теорема (О полноте по Крипке грамматических логик)

Для всякой грамматики Π , логика $\mathsf{K}\Pi$ каноническая \Rightarrow полная.

Это доказано для логик с любыми $(\gamma, \alpha, \beta, \delta)$ -аксиомами в Лекции 4.

Пусть $F = (W,(R_a)_{a \in \Sigma})$ — шкала, $\alpha, \beta \in \Sigma^*$ — слова.

Теорема (О полноте по Крипке грамматических логик)

Для всякой грамматики Π , логика $\mathsf{K}\Pi$ каноническая \Rightarrow полная.

Это доказано для логик с любыми $(\gamma, \alpha, \beta, \delta)$ -аксиомами в Лекции 4.

Пусть $F = (W, (R_a)_{a \in \Sigma})$ — шкала, $\alpha, \beta \in \Sigma^*$ — слова.

Будем писать $F \models (\alpha \to \beta)$, если $R_{\alpha} \supseteq R_{\beta}$.

Теорема (О полноте по Крипке грамматических логик)

Для всякой грамматики Π , логика $\mathsf{K}\Pi$ каноническая \Rightarrow полная.

Это доказано для логик с любыми $(\gamma, \alpha, \beta, \delta)$ -аксиомами в Лекции 4.

Пусть $F = (W, (R_a)_{a \in \Sigma})$ — шкала, $\alpha, \beta \in \Sigma^*$ — слова.

Будем писать $F \models (\alpha \to \beta)$, если $R_{\alpha} \supseteq R_{\beta}$.

Будем писать $F \models \Pi$, если $F \models (\alpha \to \beta)$ для всех правил $(\alpha \to \beta) \in \Pi$.

В этом случаем F будем называть Π -шкалой.

Теорема (О полноте по Крипке грамматических логик)

Для всякой грамматики Π , логика $\mathsf{K}\Pi$ каноническая \Rightarrow полная.

Это доказано для логик с любыми $(\gamma, \alpha, \beta, \delta)$ -аксиомами в Лекции 4.

Пусть $F = (W, (R_a)_{a \in \Sigma})$ — шкала, $\alpha, \beta \in \Sigma^*$ — слова.

Будем писать $F \models (\alpha \to \beta)$, если $R_{\alpha} \supseteq R_{\beta}$.

Будем писать $F \models \Pi$, если $F \models (\alpha \to \beta)$ для всех правил $(\alpha \to \beta) \in \Pi$.

В этом случаем F будем называть Π -шкалой.

Обозначим $Frames(\Pi) := \{F \mid F \text{ есть } \Pi$ -шкала $\}$.

Теорема (О полноте по Крипке грамматических логик)

Для всякой грамматики Π , логика $\mathsf{K}\Pi$ каноническая \Rightarrow полная.

Это доказано для логик с любыми $(\gamma, \alpha, \beta, \delta)$ -аксиомами в Лекции 4.

Пусть $F = (W, (R_a)_{a \in \Sigma})$ — шкала, $\alpha, \beta \in \Sigma^*$ — слова.

Будем писать $F \models (\alpha \to \beta)$, если $R_{\alpha} \supseteq R_{\beta}$.

Будем писать $F \models \Pi$, если $F \models (\alpha \to \beta)$ для всех правил $(\alpha \to \beta) \in \Pi$.

В этом случаем F будем называть Π -шкалой.

Обозначим $Frames(\Pi) := \{F \mid F \text{ есть } \Pi$ -шкала $\}$.

Таким образом, $K\Pi$ — логика всех Π -шкал.

Теорема (О полноте по Крипке грамматических логик)

Для всякой грамматики Π , логика $\mathsf{K}\Pi$ каноническая \Rightarrow полная.

Это доказано для логик с любыми $(\gamma, \alpha, \beta, \delta)$ -аксиомами в Лекции 4.

Пусть $F = (W, (R_a)_{a \in \Sigma})$ — шкала, $\alpha, \beta \in \Sigma^*$ — слова.

Будем писать $F \models (\alpha \to \beta)$, если $R_{\alpha} \supseteq R_{\beta}$.

Будем писать $F \models \Pi$, если $F \models (\alpha \to \beta)$ для всех правил $(\alpha \to \beta) \in \Pi$.

В этом случаем F будем называть Π -шкалой.

Обозначим $Frames(\Pi) := \{F \mid F \text{ есть } \Pi$ -шкала $\}$.

Таким образом, КП — логика всех П-шкал.

В логике КП выводятся $\square_u p \to \square_v p$ — для каких еще слов u,v?

Теорема (О полноте по Крипке грамматических логик)

Для всякой грамматики Π , логика $\mathsf{K}\Pi$ каноническая \Rightarrow полная.

Это доказано для логик с любыми $(\gamma, \alpha, \beta, \delta)$ -аксиомами в Лекции 4.

Пусть $F = (W, (R_a)_{a \in \Sigma})$ — шкала, $\alpha, \beta \in \Sigma^*$ — слова.

Будем писать $F \models (\alpha \to \beta)$, если $R_{\alpha} \supseteq R_{\beta}$.

Будем писать $F \models \Pi$, если $F \models (\alpha \to \beta)$ для всех правил $(\alpha \to \beta) \in \Pi$. В этом случаем F будем называть Π -шкалой.

Обозначим Frames(Π) := { $F \mid F$ есть Π -шкала}.

Таким образом, КП — логика всех П-шкал.

В логике КП выводятся $\square_u p \to \square_v p$ — для каких еще слов u,v?

Напоминание. Запись $u \stackrel{\sqcap}{\Longrightarrow} v$ означает:

слово u можно преобразовать в слово v некоторой цепочкой из $n \geqslant 0$ замен подслов по правилам $(\alpha \to \beta)$ из грамматики Π .

Теорема (Полнота отн. выводимости в грамматике; Baldoni 1998)

Для всякой грамматики $\Pi\subseteq (\Sigma^* imes \Sigma^*)$ и слов u,v в алфавите Σ :

$$\mathsf{K}\Pi \;\vdash\; \Box_{u} \mathsf{p} \to \Box_{v} \mathsf{p} \qquad \Longleftrightarrow \qquad \mathsf{u} \stackrel{\mathsf{\Pi}}{\Longrightarrow} \mathsf{v}.$$

Теорема (Полнота отн. выводимости в грамматике; Baldoni 1998)

Для всякой грамматики $\Pi\subseteq (\Sigma^* imes \Sigma^*)$ и слов u,v в алфавите Σ :

$$\mathsf{K}\Pi \vdash \Box_{u}p \to \Box_{v}p \iff u \stackrel{\sqcap}{\Longrightarrow} v.$$

Доказательство.

 (\Leftarrow) Для каждого правила lpha o eta из Π и любых слов X,Y имеем:

Теорема (Полнота отн. выводимости в грамматике; Baldoni 1998)

Для всякой грамматики $\Pi\subseteq (\Sigma^* \times \Sigma^*)$ и слов u,v в алфавите Σ :

$$\mathsf{K}\Pi \vdash \Box_{u}p \to \Box_{v}p \iff u \stackrel{\mathsf{\Pi}}{\Longrightarrow} v.$$

Доказательство.

(\Leftarrow) Для каждого правила $\alpha \to \beta$ из Π и любых слов X,Y имеем:

$$\mathsf{K}\mathsf{\Pi} \vdash \Box_{\alpha} \quad \mathsf{p} \rightarrow \Box_{\beta} \quad \mathsf{p}$$

Теорема (Полнота отн. выводимости в грамматике; Baldoni 1998)

Для всякой грамматики $\Pi\subseteq (\Sigma^* imes \Sigma^*)$ и слов u,v в алфавите Σ :

$$\mathsf{K}\Pi \vdash \Box_{u} p \to \Box_{v} p \iff u \stackrel{\sqcap}{\Longrightarrow} v.$$

Доказательство.

(\Leftarrow) Для каждого правила $\alpha \to \beta$ из П и любых слов X,Y имеем:

Теорема (Полнота отн. выводимости в грамматике; Baldoni 1998)

Для всякой грамматики $\Pi\subseteq (\Sigma^* imes \Sigma^*)$ и слов u,v в алфавите Σ :

$$\mathsf{K}\Pi \vdash \Box_{u} p \to \Box_{v} p \iff u \stackrel{\mathsf{\Pi}}{\Longrightarrow} v.$$

Доказательство.

 (\Leftarrow) Для каждого правила lpha o eta из Π и любых слов X,Y имеем:

Теорема (Полнота отн. выводимости в грамматике; Baldoni 1998)

Для всякой грамматики $\Pi\subseteq (\Sigma^* imes \Sigma^*)$ и слов u,v в алфавите Σ :

$$\mathsf{K}\Pi \vdash \Box_{u} \mathsf{p} \to \Box_{v} \mathsf{p} \qquad \Longleftrightarrow \qquad \mathsf{u} \stackrel{\sqcap}{\Longrightarrow} \mathsf{v}.$$

Доказательство.

(\Leftarrow) Для каждого правила $\alpha \to \beta$ из П и любых слов X,Y имеем:

Таким образом, одношаговую выводимость $X\alpha Y \stackrel{\sqcap}{\longmapsto} X\beta Y$ мы умеем «имитировать» в логике $K\Pi$.

Теорема (Полнота отн. выводимости в грамматике; Baldoni 1998)

Для всякой грамматики $\Pi\subseteq (\Sigma^* imes \Sigma^*)$ и слов u,v в алфавите Σ :

$$\mathsf{K}\Pi \vdash \Box_{u} \mathsf{p} \to \Box_{v} \mathsf{p} \qquad \Longleftrightarrow \qquad \mathsf{u} \stackrel{\sqcap}{\Longrightarrow} \mathsf{v}.$$

Доказательство.

(\Leftarrow) Для каждого правила $\alpha \to \beta$ из П и любых слов X,Y имеем:

Таким образом, одношаговую выводимость $X\alpha Y \stackrel{\sqcap}{\longmapsto} X\beta Y$ мы умеем «имитировать» в логике КП. Тогда и многошаговую $u \stackrel{\sqcap}{\Longrightarrow} v$ тоже. \square

Теорема (Полнота отн. выводимости в грамматике; Baldoni 1998)

Для всякой грамматики $\Pi\subseteq (\Sigma^* imes \Sigma^*)$ и слов u,v в алфавите Σ :

$$\mathsf{K}\Pi \;\vdash\; \Box_{u} p \to \Box_{v} p \qquad \Longleftrightarrow \qquad u \stackrel{\sqcap}{\Longrightarrow} v.$$

Теорема (Полнота отн. выводимости в грамматике; Baldoni 1998) Для всякой грамматики $\Pi \subseteq (\Sigma^* \times \Sigma^*)$ и слов u, v в алфавите Σ :

$$\mathsf{K}\Pi \vdash \Box_{u}p \to \Box_{v}p \iff u \stackrel{\sqcap}{\Longrightarrow} v.$$

Доказательство.

 (\Rightarrow) Baldoni (1998) построил табличные исчисления (tableau calculi) для грамматических логик и с их помощью доказал эту теорему (полное доказательство изложено в его диссертации 1998 года).

Теорема (Полнота отн. выводимости в грамматике; Baldoni 1998) Для всякой грамматики $\Pi\subseteq (\Sigma^*\times \Sigma^*)$ и слов u,v в алфавите Σ :

$$\mathsf{K}\Pi \vdash \Box_{u} \mathsf{p} \to \Box_{v} \mathsf{p} \qquad \Longleftrightarrow \qquad \mathsf{u} \stackrel{\sqcap}{\Longrightarrow} \mathsf{v}.$$

Доказательство.

 (\Rightarrow) Baldoni (1998) построил табличные исчисления (tableau calculi) для грамматических логик и с их помощью доказал эту теорему (полное доказательство изложено в его диссертации 1998 года).

Ранее Fariñas del Cerro и Penttonen (1988) доказали эту теорему для грамматических логик, соответствующих системам Туэ, то есть симметричным грамматикам (их правила имеют вид $\alpha \leftrightarrow \beta$).

Теорема (Полнота отн. выводимости в грамматике; Baldoni 1998) Для всякой грамматики $\Pi\subseteq (\Sigma^*\times \Sigma^*)$ и слов u,v в алфавите Σ :

$$\mathsf{K}\Pi \vdash \Box_{u}p \to \Box_{v}p \iff u \stackrel{\sqcap}{\Longrightarrow} v.$$

Доказательство.

 (\Rightarrow) Baldoni (1998) построил табличные исчисления (tableau calculi) для грамматических логик и с их помощью доказал эту теорему (полное доказательство изложено в его диссертации 1998 года).

Ранее Fariñas del Cerro и Penttonen (1988) доказали эту теорему для грамматических логик, соответствующих системам Туэ, то есть симметричным грамматикам (их правила имеют вид $\alpha \leftrightarrow \beta$).

В работе Чагрова и Шехтмана (1995) эта теорема приводится как следствие из результатов Шайна (1964) о представлении частично упорядоченных моноидов специального вида.

Редукции, выводимые в грамматической логике

Теорема (Полнота отн. выводимости в грамматике; Baldoni 1998)

Для всякой грамматики $\Pi\subseteq (\Sigma^* imes \Sigma^*)$ и слов u,v в алфавите Σ :

$$\mathsf{K}\Pi \vdash \Box_{u}p \to \Box_{v}p \iff u \stackrel{\sqcap}{\Longrightarrow} v.$$

Редукции, выводимые в грамматической логике

Теорема (Полнота отн. выводимости в грамматике; Baldoni 1998)

Для всякой грамматики $\Pi\subseteq (\Sigma^* \times \Sigma^*)$ и слов u,v в алфавите Σ :

$$\mathsf{K}\Pi \vdash \Box_{u} p \to \Box_{v} p \iff u \stackrel{\sqcap}{\Longrightarrow} v.$$

Поскольку логика КП — каноническая, то получаем следующее

Следствие

Для любой грамматики Π и слов $u,v\in \Sigma^*$ эквивалентны следующие утверждения (здесь $F_{\mathbf{K}\Pi}$ — каноническая шкала логики $\mathbf{K}\Pi$):

- $\bullet \ \mathsf{K}\Pi \vdash \Box_{u} p \to \Box_{v} p,$
- **2** Frames(Π) $\models \Box_u p \rightarrow \Box_v p$,

Редукции, выводимые в грамматической логике

Теорема (Полнота отн. выводимости в грамматике; Baldoni 1998)

Для всякой грамматики $\Pi\subseteq (\Sigma^* imes \Sigma^*)$ и слов u,v в алфавите Σ :

$$\mathsf{K}\Pi \vdash \Box_{u} p \to \Box_{v} p \iff u \stackrel{\sqcap}{\Longrightarrow} v.$$

Поскольку логика $\mathsf{K}\Pi$ — каноническая, то получаем следующее

Следствие

Для любой грамматики Π и слов $u,v\in \Sigma^*$ эквивалентны следующие утверждения (здесь $F_{\mathbf{K}\Pi}$ — каноническая шкала логики $\mathbf{K}\Pi$):

- $\bullet \ \mathsf{K}\Pi \vdash \Box_{u} p \to \Box_{v} p,$

Вопрос. Можно ли найти простое доказательство этого утверждения?

Существование неразрешимых грамматических логик

Определение

Грамматика Π наз. разрешимой, если отношение $\stackrel{\Pi}{\Longrightarrow}$ разрешимо.

Существование неразрешимых грамматических логик

Определение

Грамматика Π наз. разрешимой, если отношение $\stackrel{\Pi}{\Longrightarrow}$ разрешимо.

Существуют конечные неразрешимые (полу-)системы Туэ.

Теорема (Матиясевич, 1967)

Следующая система Туэ в алфавите $\Sigma = \{a,b,c,d,e\}$ неразрешима:

$$ac \leftrightarrow ca$$
, $ad \leftrightarrow da$, $bc \leftrightarrow bc$, $bd \leftrightarrow db$, $eca \leftrightarrow ce$, $edb \leftrightarrow de$, $cdca \leftrightarrow cdce$.

Существование неразрешимых грамматических логик

Определение

Грамматика Π наз. разрешимой, если отношение $\stackrel{\Pi}{\Longrightarrow}$ разрешимо.

Существуют конечные неразрешимые (полу-)системы Туэ.

Теорема (Матиясевич, 1967)

Следующая система Туэ в алфавите $\Sigma = \{a,b,c,d,e\}$ неразрешима:

$$ac \leftrightarrow ca$$
, $ad \leftrightarrow da$, $bc \leftrightarrow bc$, $bd \leftrightarrow db$, $eca \leftrightarrow ce$, $edb \leftrightarrow de$, $cdca \leftrightarrow cdce$.

Следствие

Существуют неразрешимые конечно аксиоматизируемые грамматические модальные логики $\mathsf{K}\Pi$.

Доказательство.

Если Π неразрешима, то $\{A = \Box_u p \to \Box_v p \mid \mathsf{K}\Pi \vdash A\}$ тоже.

Определение

Грамматика Π контекстно-свободная, если все ее правила имеют вид $a \to \beta$, где $a \in \Sigma$, $\beta \in \Sigma^*$. То есть слева всегда буква.

Определение

Грамматика П контекстно-свободная, если все ее правила имеют вид $a \to \beta$, где $a \in \Sigma$, $\beta \in \Sigma^*$. То есть слева всегда буква.

Все ли КС-грамматические модальные логики разрешимы?

Определение

Грамматика Π контекстно-свободная, если все ее правила имеют вид $a \to \beta$, где $a \in \Sigma$, $\beta \in \Sigma^*$. То есть слева всегда буква.

Все ли КС-грамматические модальные логики разрешимы? Heт! Baldoni (1998) доказал существование неразрешимых КС-грам. логик.

Определение

Грамматика П контекстно-свободная, если все ее правила имеют вид $a \to \beta$, где $a \in \Sigma$, $\beta \in \Sigma^*$. То есть слева всегда буква.

Все ли КС-грамматические модальные логики разрешимы? Heт! Baldoni (1998) доказал существование неразрешимых КС-грам. логик.

Теорема (С. Кикоть, 2014)

• Логика КП грамматики П = $\{b \to aba\}$ — не допускает фильтрацию. (Разрешима ли она, нам неизвестно.)

Определение

Грамматика П контекстно-свободная, если все ее правила имеют вид $a \to \beta$, где $a \in \Sigma$, $\beta \in \Sigma^*$. То есть слева всегда буква.

Все ли КС-грамматические модальные логики разрешимы? Нет! Baldoni (1998) доказал существование неразрешимых КС-грам. логик.

Теорема (С. Кикоть, 2014)

- ullet Логика **К** Π грамматики $\Pi = \{ b
 ightarrow aba \}$ не допускает фильтрацию. (Разрешима ли она, нам неизвестно.)
- ullet Если к Π добавить правила c o ca и c o cb, то соответствующая логика (с тремя модальностями) будет неразрешимой.

Определение

Грамматика П контекстно-свободная, если все ее правила имеют вид $a \to \beta$, где $a \in \Sigma$, $\beta \in \Sigma^*$. То есть слева всегда буква.

Все ли КС-грамматические модальные логики разрешимы? Heт! Baldoni (1998) доказал существование неразрешимых КС-грам. логик.

Теорема (С. Кикоть, 2014)

- Логика КП грамматики П = $\{b \to aba\}$ не допускает фильтрацию. (Разрешима ли она, нам неизвестно.)
- ullet Если к Π добавить правила c o ca и c o cb, то соответствующая логика (с тремя модальностями) будет неразрешимой.

Для сравнения:

• Логика КП грамматики П = $\{b \to bab\}$ — допускает фильтрацию. Следовательно, эта логика разрешима.

Язык — произвольное подмножество слов: $\mathcal{L} \subseteq \Sigma^*$.

Язык — произвольное подмножество слов: $\mathcal{L} \subseteq \Sigma^*$.

Определение (Операции над языками)

Язык — произвольное подмножество слов: $\mathcal{L} \subseteq \Sigma^*$.

Определение (Операции над языками)

Пусть L, L_1, L_2 — языки над алфавитом Σ .

ullet объединение языков: $L_1 \cup L_2$,

Язык — произвольное подмножество слов: $\mathcal{L} \subseteq \Sigma^*$.

Определение (Операции над языками)

- ullet объединение языков: $L_1 \cup L_2$,
- ullet конкатенация языков: $L_1 \circ L_2 = \{uv \mid u \in L_1, \ v \in L_2\}$,

Язык — произвольное подмножество слов: $\mathcal{L} \subseteq \Sigma^*$.

Определение (Операции над языками)

- ullet объединение языков: $L_1 \cup L_2$,
- ullet конкатенация языков: $L_1 \circ L_2 = \{uv \mid u \in L_1, \ v \in L_2\}$,
- ullet степень языка: $L^0 := \{ arepsilon \}$, $L^1 = L$, $L^n = L \circ \ldots \circ L$ (n множителей),

Язык — произвольное подмножество слов: $\mathcal{L} \subseteq \Sigma^*$.

Определение (Операции над языками)

- ullet объединение языков: $L_1 \cup L_2$,
- ullet конкатенация языков: $L_1 \circ L_2 = \{uv \mid u \in L_1, \ v \in L_2\}$,
- ullet степень языка: $L^0 := \{ arepsilon \}$, $L^1 = L$, $L^n = L \circ \ldots \circ L$ (n множителей),
- ullet звездочка Клини: $L^* = L^0 \cup L^1 \cup L^2 \cup \ldots = \{u_1 \ldots u_n \mid u_i \in L, n \geqslant 0\}.$

Определение

Определение

Регулярные языки — определяются по индукции:

ullet пустой язык arnothing — регулярный,

Определение

- пустой язык ∅ регулярный,
- ullet язык из пустого слова $\{arepsilon\}$ регулярный,

Определение

- ullet пустой язык arnothing регулярный,
- ullet язык из пустого слова $\{arepsilon\}$ регулярный,
- ullet язык из одной буквы $\{a\}$, где $a\in \Sigma$, регулярный,

Определение

- ullet пустой язык arnothing регулярный,
- ullet язык из пустого слова $\{arepsilon\}$ регулярный,
- ullet язык из одной буквы $\{a\}$, где $a\in \Sigma$, регулярный,
- ullet если L_1 и L_2 регулярные, то $L_1 \cup L_2$ регулярный язык

Определение

- ullet пустой язык arnothing регулярный,
- ullet язык из пустого слова $\{arepsilon\}$ регулярный,
- ullet язык из одной буквы $\{a\}$, где $a\in \Sigma$, регулярный,
- ullet если L_1 и L_2 регулярные, то $L_1 \cup L_2$ регулярный язык
- ullet если L_1 и L_2 регулярные, то $L_1 \circ L_2$ регулярный язык,

Определение

- ullet пустой язык arnothing регулярный,
- ullet язык из пустого слова $\{arepsilon\}$ регулярный,
- ullet язык из одной буквы $\{a\}$, где $a\in \Sigma$, регулярный,
- ullet если L_1 и L_2 регулярные, то $L_1 \cup L_2$ регулярный язык
- ullet если L_1 и L_2 регулярные, то $L_1 \circ L_2$ регулярный язык,
- ullet если L регулярный, то L^* регулярный язык.

Определение

Регулярные языки — определяются по индукции:

- ullet пустой язык arnothing регулярный,
- ullet язык из пустого слова $\{arepsilon\}$ регулярный,
- ullet язык из одной буквы $\{a\}$, где $a\in \Sigma$, регулярный,
- ullet если L_1 и L_2 регулярные, то $L_1 \cup L_2$ регулярный язык
- ullet если L_1 и L_2 регулярные, то $L_1 \circ L_2$ регулярный язык,
- ullet если L регулярный, то L^* регулярный язык.

Для каждого регулярного языка можно записать «протокол» — последовательность операций, какими он получился из простейших языков (\varnothing , $\{\varepsilon\}$, $\{a\}$, где $a\in\Sigma$).

Определение

Регулярные языки — определяются по индукции:

- ullet пустой язык arnothing регулярный,
- ullet язык из пустого слова $\{arepsilon\}$ регулярный,
- ullet язык из одной буквы $\{a\}$, где $a\in \Sigma$, регулярный,
- ullet если L_1 и L_2 регулярные, то $L_1 \cup L_2$ регулярный язык
- ullet если L_1 и L_2 регулярные, то $L_1 \circ L_2$ регулярный язык,
- ullet если L регулярный, то L^* регулярный язык.

Для каждого регулярного языка можно записать «протокол» — последовательность операций, какими он получился из простейших языков $(\varnothing, \{\varepsilon\}, \{a\}, \text{ где } a \in \Sigma)$.

Этот протокол называют регулярным выражением.

Определение

Регулярные выражения над алфавитом Σ определяются по индукции:

Определение

Регулярные выражения над алфавитом Σ определяются по индукции:

• записи \varnothing , ε , a (где $a \in \Sigma$) — регулярные выражения,

Определение

Регулярные выражения над алфавитом Σ определяются по индукции:

- записи \varnothing , ε , a (где $a \in \Sigma$) регулярные выражения,
- \bullet если e_1 и e_2 рег. выражения, то $(e_1 \cup e_2)$ и $(e_1 \circ e_2)$ тоже,

Определение

Регулярные выражения над алфавитом Σ определяются по индукции:

- ullet записи \varnothing , arepsilon, a (где $a\in\Sigma$) регулярные выражения,
- ullet если e_1 и e_2 рег. выражения, то $(e_1 \cup e_2)$ и $(e_1 \circ e_2)$ тоже,
- ullet если е регулярное выражение, то е* тоже.

Определение

Регулярные выражения над алфавитом Σ определяются по индукции:

- ullet записи arnothing, arepsilon, a (где $a\in\Sigma$) регулярные выражения,
- ullet если e_1 и e_2 рег. выражения, то $(e_1 \cup e_2)$ и $(e_1 \circ e_2)$ тоже,
- \bullet если е регулярное выражение, то e^* тоже.

Пример. Регулярное выражение: $a \cup (b \circ (a \cup b)^*)$.

Определение

Регулярные выражения над алфавитом ∑ определяются по индукции:

- записи \varnothing , ε , a (где $a \in \Sigma$) регулярные выражения,
- ullet если e_1 и e_2 рег. выражения, то $(e_1 \cup e_2)$ и $(e_1 \circ e_2)$ тоже,
- если e регулярное выражение, то e^* тоже.

Пример. Регулярное выражение: $a \cup (b \circ (a \cup b)^*)$. Оно «задает» язык $\{a, b, ba, bb, baa, bab, bba, bbb, \ldots\}$.

Определение

Регулярные выражения над алфавитом Σ определяются по индукции:

- ullet записи arnothing, arepsilon, a (где $a\in\Sigma$) регулярные выражения,
- ullet если e_1 и e_2 рег. выражения, то $(e_1 \cup e_2)$ и $(e_1 \circ e_2)$ тоже,
- \bullet если е регулярное выражение, то e^* тоже.

Пример. Регулярное выражение: $a \cup (b \circ (a \cup b)^*)$.

Оно «задает» язык $\{a, b, ba, bb, baa, bab, bba, bbb, \ldots\}$.

Сокращение: $e^+ := e \circ e^*$.

Определение

Регулярные выражения над алфавитом Σ определяются по индукции:

- ullet записи \varnothing , arepsilon, a (где $a\in\Sigma$) регулярные выражения,
- ullet если e_1 и e_2 рег. выражения, то $(e_1 \cup e_2)$ и $(e_1 \circ e_2)$ тоже,
- если е регулярное выражение, то е* тоже.

Пример. Регулярное выражение: $a \cup (b \circ (a \cup b)^*)$.

Оно «задает» язык $\{a, b, ba, bb, baa, bab, bba, bbb, \ldots\}$.

Сокращение: $e^+ := e \circ e^*$.

Часто вместо \cup пишут |, вместо \circ не пишут ничего, конкатенация связывает сильнее объединения:

Определение

Регулярные выражения над алфавитом Σ определяются по индукции:

- ullet записи \varnothing , arepsilon, a (где $a\in\Sigma$) регулярные выражения,
- ullet если e_1 и e_2 рег. выражения, то $(e_1 \cup e_2)$ и $(e_1 \circ e_2)$ тоже,
- ullet если е регулярное выражение, то e^* тоже.

Пример. Регулярное выражение: $a \cup (b \circ (a \cup b)^*)$.

Оно «задает» язык $\{a, b, ba, bb, baa, bab, bba, bbb, \ldots\}$.

Сокращение: $e^+ := e \circ e^*$.

Часто вместо \cup пишут |, вместо \circ не пишут ничего, конкатенация связывает сильнее объединения: $a \mid b(a \mid b)^*$

Определение

Регулярные выражения над алфавитом Σ определяются по индукции:

- ullet записи \varnothing , arepsilon, a (где $a\in\Sigma$) регулярные выражения,
- ullet если e_1 и e_2 рег. выражения, то $(e_1 \cup e_2)$ и $(e_1 \circ e_2)$ тоже,
- если е регулярное выражение, то е* тоже.

Пример. Регулярное выражение: $a \cup (b \circ (a \cup b)^*)$.

Оно «задает» язык $\{a, b, ba, bb, baa, bab, bba, bbb, \ldots\}$.

Сокращение: $e^+ := e \circ e^*$.

Часто вместо \cup пишут |, вместо \circ не пишут ничего, конкатенация связывает сильнее объединения: $a \mid b(a \mid b)^*$

Что значит «задает»?

Определение

Регулярные выражения над алфавитом Σ определяются по индукции:

- записи \varnothing , ε , a (где $a \in \Sigma$) регулярные выражения,
- ullet если e_1 и e_2 рег. выражения, то $(e_1 \cup e_2)$ и $(e_1 \circ e_2)$ тоже,
- если e регулярное выражение, то e^* тоже.

Определение

Регулярные выражения над алфавитом Σ определяются по индукции:

- ullet записи \varnothing , arepsilon, a (где $a\in\Sigma$) регулярные выражения,
- ullet если e_1 и e_2 рег. выражения, то $(e_1 \cup e_2)$ и $(e_1 \circ e_2)$ тоже,
- если е регулярное выражение, то e^* тоже.

Восстановим по регулярному выражению задаваемый им рег. язык.

Определение

Регулярные выражения над алфавитом Σ определяются по индукции:

- ullet записи \varnothing , arepsilon, a (где $a\in\Sigma$) регулярные выражения,
- ullet если e_1 и e_2 рег. выражения, то $(e_1 \cup e_2)$ и $(e_1 \circ e_2)$ тоже,
- если e регулярное выражение, то e^* тоже.

Восстановим по регулярному выражению задаваемый им рег. язык.

Определение

Язык $\mathbb{L}(e)\subseteq \Sigma^*$, задаваемый регулярным выражением e:

Определение

Регулярные выражения над алфавитом Σ определяются по индукции:

- записи \varnothing , ε , a (где $a \in \Sigma$) регулярные выражения,
- ullet если e_1 и e_2 рег. выражения, то $(e_1 \cup e_2)$ и $(e_1 \circ e_2)$ тоже,
- если e регулярное выражение, то e^* тоже.

Восстановим по регулярному выражению задаваемый им рег. язык.

Определение

Язык $\mathbb{L}(e) \subseteq \Sigma^*$, задаваемый регулярным выражением e:

ullet $\mathbb{L}(\varnothing)=\varnothing, \ \mathbb{L}(arepsilon)=\{arepsilon\}, \ \mathbb{L}(a)=\{a\}$ для каждой буквы $a\in\Sigma$,

Определение

Регулярные выражения над алфавитом Σ определяются по индукции:

- ullet записи \varnothing , arepsilon, a (где $a\in\Sigma$) регулярные выражения,
- ullet если e_1 и e_2 рег. выражения, то $(e_1 \cup e_2)$ и $(e_1 \circ e_2)$ тоже,
- если е регулярное выражение, то е* тоже.

Восстановим по регулярному выражению задаваемый им рег. язык.

Определение

Язык $\mathbb{L}(e)\subseteq \Sigma^*$, задаваемый регулярным выражением e:

- ullet $\mathbb{L}(arnothing)=arnothing, \ \mathbb{L}(arepsilon)=\{arepsilon\}, \ \mathbb{L}(a)=\{a\}$ для каждой буквы $a\in\Sigma$,
- $\mathbb{L}(e_1 \cup e_2) = \mathbb{L}(e_1) \cup \mathbb{L}(e_2)$,
- $\mathbb{L}(e_1 \circ e_2) = \mathbb{L}(e_1) \circ \mathbb{L}(e_2)$,
- $\mathbb{L}(e^*) = (\mathbb{L}(e_1))^*$.

Регулярные языки

Теорема

Для любого языка \mathcal{L} , следующие условия эквивалентны:

- \bullet \mathcal{L} регулярный язык,
- ullet С задается некоторым регулярным выражением: $\mathcal{L} = \mathbb{L}(\mathsf{e})$,

Регулярные языки

Теорема

Для любого языка \mathcal{L} , следующие условия эквивалентны:

- \bullet \mathcal{L} регулярный язык,
- ullet Задается некоторым регулярным выражением: $\mathcal{L} = \mathbb{L}(\mathsf{e})$,
- ullet распознается конечным детерминированным автоматом,
- ullet распознается конечным недетерминированным автоматом.

(См. учебник по теории формальных языков.)

$$\Pi(u) = \{v \mid u \stackrel{\sqcap}{\Longrightarrow} v\}$$
 — множество слов, выводимых из u в Π .

$$\Pi(u) = \{v \mid u \stackrel{\sqcap}{\Longrightarrow} v\}$$
 — множество слов, выводимых из u в Π .

Определение

КС-грамматика Π называется регулярной, если для каждой буквы $a \in \Sigma$ язык $\Pi(a)$ является регулярным.

$$\Pi(u) = \{v \mid u \stackrel{\Pi}{\Longrightarrow} v\}$$
 — множество слов, выводимых из u в Π .

Определение

КС-грамматика Π называется регулярной, если для каждой буквы $a \in \Sigma$ язык $\Pi(a)$ является регулярным.

Грамматическая логика $K\Pi$ называется регулярной модальной логикой, если грамматика Π регулярна.

$$\Pi(u) = \{v \mid u \stackrel{\Pi}{\Longrightarrow} v\}$$
 — множество слов, выводимых из u в Π .

Определение

КС-грамматика Π называется регулярной, если для каждой буквы $a \in \Sigma$ язык $\Pi(a)$ является регулярным.

Грамматическая логика $K\Pi$ называется регулярной модальной логикой, если грамматика Π регулярна.

Грамматика $\Pi = \{b \to aba\}$ нерегулярна, поскольку язык слов, выводимых в Π из буквы b, не является регулярным:

$$\Pi(b) = \{a^n b a^n \mid n \geqslant 0\}.$$

$$\Pi(u) = \{v \mid u \stackrel{\Pi}{\Longrightarrow} v\}$$
 — множество слов, выводимых из u в Π .

Определение

КС-грамматика Π называется регулярной, если для каждой буквы $a \in \Sigma$ язык $\Pi(a)$ является регулярным.

Грамматическая логика $K\Pi$ называется регулярной модальной логикой, если грамматика Π регулярна.

Грамматика $\Pi = \{b \to aba\}$ нерегулярна, поскольку язык слов, выводимых в Π из буквы b, не является регулярным:

$$\Pi(b) = \{a^n b a^n \mid n \geqslant 0\}.$$

Теорема

Алгоритмически неразрешима проблема:

«является ли КС-грамматика П регулярной?».

$$\Pi(u) = \{v \mid u \stackrel{\Pi}{\Longrightarrow} v\}$$
 — множество слов, выводимых из u в Π .

Определение

КС-грамматика П называется регулярной, если для каждой буквы $a \in \Sigma$ язык $\Pi(a)$ является регулярным.

Грамматическая логика КП называется регулярной модальной логикой, если грамматика П регулярна.

$$\Pi(u) = \{v \mid u \stackrel{\sqcap}{\Longrightarrow} v\}$$
 — множество слов, выводимых из u в Π .

Определение

КС-грамматика Π называется регулярной, если для каждой буквы $a \in \Sigma$ язык $\Pi(a)$ является регулярным.

Грамматическая логика $K\Pi$ называется регулярной модальной логикой, если грамматика Π регулярна.

Теорема (Шапировский, Золин, 2014)

Всякая регулярная модальная логика допускает фильтрацию.

$$\Pi(u) = \{v \mid u \stackrel{\Pi}{\Longrightarrow} v\}$$
 — множество слов, выводимых из u в Π .

Определение

КС-грамматика Π называется регулярной, если для каждой буквы $a \in \Sigma$ язык $\Pi(a)$ является регулярным.

Грамматическая логика $K\Pi$ называется регулярной модальной логикой, если грамматика Π регулярна.

Теорема (Шапировский, Золин, 2014)

Всякая регулярная модальная логика допускает фильтрацию.

Следствие (S. Demri, 2001)

Всякая регулярная модальная логика обладает FMP и разрешима.

$$\Pi(u) = \{v \mid u \stackrel{\Pi}{\Longrightarrow} v\}$$
 — множество слов, выводимых из u в Π .

Определение

КС-грамматика Π называется регулярной, если для каждой буквы $a \in \Sigma$ язык $\Pi(a)$ является регулярным.

Грамматическая логика $K\Pi$ называется регулярной модальной логикой, если грамматика Π регулярна.

Теорема (Шапировский, Золин, 2014)

Всякая регулярная модальная логика допускает фильтрацию.

Следствие (S. Demri, 2001)

Всякая регулярная модальная логика обладает FMP и разрешима.

Их сложность — между PSPACE и EXPTIME.

$$\Pi(u) = \{v \mid u \stackrel{\Pi}{\Longrightarrow} v\}$$
 — множество слов, выводимых из u в Π .

Определение

КС-грамматика Π называется регулярной, если для каждой буквы $a \in \Sigma$ язык $\Pi(a)$ является регулярным.

Грамматическая логика $K\Pi$ называется регулярной модальной логикой, если грамматика Π регулярна.

Теорема (Шапировский, Золин, 2014)

Всякая регулярная модальная логика допускает фильтрацию.

Следствие (S. Demri, 2001)

Всякая регулярная модальная логика обладает FMP и разрешима.

Ux сложность — между PSPACE и EXPTIME.

Все они обладают ExpMP (если $L \nvdash A$, то A опровергается на некоторой L-модели экспоненциального от длины |A| размера).

Мы уже умеем фильтровать некоторые регулярные модальные логики:

ullet Логика $\mathsf{K4} = \mathsf{K} \oplus (\Box p o \Box \Box p)$ — соответствует рег. грамматике $\Pi = \{a o aa\}.$

Мы уже умеем фильтровать некоторые регулярные модальные логики:

• Логика K4 = K \oplus ($\Box p \to \Box \Box p$) — соответствует рег. грамматике $\Pi = \{a \to aa\}$. Регулярное выражение для $\Pi(a)$: a^+ .

- Логика $K4 = K \oplus (\Box p \to \Box \Box p)$ соответствует рег. грамматике $\Pi = \{a \to aa\}$. Регулярное выражение для $\Pi(a)$: a^+ .
- ullet Логика $\mathbf{S4} = \mathbf{K4} \oplus (\Box p o p)$ соответствует рег. грамматике $\Pi = \{a o aa, \ a o \varepsilon\}.$

- Логика $K4 = K \oplus (\Box p \to \Box \Box p)$ соответствует рег. грамматике $\Pi = \{a \to aa\}$. Регулярное выражение для $\Pi(a)$: a^+ .
- Логика $S4 = K4 \oplus (\Box p \to p)$ соответствует рег. грамматике $\Pi = \{a \to aa, \ a \to \varepsilon\}$. Регулярное выражение для $\Pi(a)$: a^* .

- Логика $K4 = K \oplus (\Box p \to \Box \Box p)$ соответствует рег. грамматике $\Pi = \{a \to aa\}$. Регулярное выражение для $\Pi(a)$: a^+ .
- Логика $S4 = K4 \oplus (\Box p \to p)$ соответствует рег. грамматике $\Pi = \{a \to aa, \ a \to \varepsilon\}$. Регулярное выражение для $\Pi(a)$: a^* .
- ullet Логика $old K \oplus (\Box p o \Box^n \Box p)$ соответствует рег. грамматике $\Pi = \{a o a^n a\}.$

- Логика $K4 = K \oplus (\Box p \to \Box \Box p)$ соответствует рег. грамматике $\Pi = \{a \to aa\}$. Регулярное выражение для $\Pi(a)$: a^+ .
- Логика $\mathbf{S4} = \mathbf{K4} \oplus (\Box p \to p)$ соответствует рег. грамматике $\Pi = \{a \to aa, \ a \to \varepsilon\}$. Регулярное выражение для $\Pi(a)$: a^* .
- Логика $\mathsf{K} \oplus (\Box p \to \Box^n \Box p)$ соответствует рег. грамматике $\Pi = \{a \to a^n a\}$. Регулярное выражение для $\Pi(a)$: $(a^n)^* \circ a$.

- Логика K4 = K \oplus ($\Box p \to \Box \Box p$) соответствует рег. грамматике $\Pi = \{a \to aa\}$. Регулярное выражение для $\Pi(a)$: a^+ .
- Логика $S4 = K4 \oplus (\Box p \to p)$ соответствует рег. грамматике $\Pi = \{a \to aa, \ a \to \varepsilon\}$. Регулярное выражение для $\Pi(a)$: a^* .
- Логика $\mathsf{K} \oplus (\Box p \to \Box^n \Box p)$ соответствует рег. грамматике $\Pi = \{a \to a^n a\}$. Регулярное выражение для $\Pi(a)$: $(a^n)^* \circ a$.
- Логика K \oplus { $\square p \to \square^4 \square p, \ \square p \to \square^7 \square p$ }.

- Логика K4 = K \oplus ($\Box p \to \Box \Box p$) соответствует рег. грамматике $\Pi = \{a \to aa\}$. Регулярное выражение для $\Pi(a)$: a^+ .
- Логика $S4 = K4 \oplus (\Box p \to p)$ соответствует рег. грамматике $\Pi = \{a \to aa, \ a \to \varepsilon\}$. Регулярное выражение для $\Pi(a)$: a^* .
- Логика $\mathsf{K} \oplus (\Box p \to \Box^n \Box p)$ соответствует рег. грамматике $\Pi = \{a \to a^n a\}$. Регулярное выражение для $\Pi(a)$: $(a^n)^* \circ a$.
- Логика K \oplus { $\Box p \to \Box^4 \Box p, \ \Box p \to \Box^7 \Box p$ }. Регулярная грамматика: $\Pi = \{a \to a^4 a, \ a \to a^6 a\}$.

- Логика K4 = K \oplus ($\Box p \to \Box \Box p$) соответствует рег. грамматике $\Pi = \{a \to aa\}$. Регулярное выражение для $\Pi(a)$: a^+ .
- Логика $S4 = K4 \oplus (\Box p \to p)$ соответствует рег. грамматике $\Pi = \{a \to aa, \ a \to \varepsilon\}$. Регулярное выражение для $\Pi(a)$: a^* .
- Логика $\mathbf{K} \oplus (\Box p \to \Box^n \Box p)$ соответствует рег. грамматике $\Pi = \{a \to a^n a\}$. Регулярное выражение для $\Pi(a)$: $(a^n)^* \circ a$.
- Логика K \oplus { $\Box p \to \Box^4 \Box p, \ \Box p \to \Box^7 \Box p$ }. Регулярная грамматика: $\Pi = \{a \to a^4 a, \ a \to a^6 a\}$. Язык: $\Pi(a) = \{a, a^{4+1}, a^{7+1}, a^{4+4+1}, a^{4+7+1}, a^{7+7+1}, a^{4+4+4+1}, \dots\}$.

- Логика $K4 = K \oplus (\Box p \to \Box \Box p)$ соответствует рег. грамматике $\Pi = \{a \to aa\}$. Регулярное выражение для $\Pi(a)$: a^+ .
- Логика $\mathbf{S4} = \mathbf{K4} \oplus (\Box p \to p)$ соответствует рег. грамматике $\Pi = \{a \to aa, \ a \to \varepsilon\}$. Регулярное выражение для $\Pi(a)$: a^* .
- Логика $\mathbf{K} \oplus (\Box p \to \Box^n \Box p)$ соответствует рег. грамматике $\Pi = \{a \to a^n a\}$. Регулярное выражение для $\Pi(a)$: $(a^n)^* \circ a$.
- Логика K \oplus { $\Box p \to \Box^4 \Box p, \ \Box p \to \Box^7 \Box p$ }. Регулярная грамматика: $\Pi = \{a \to a^4 a, \ a \to a^6 a\}$. Язык: $\Pi(a) = \{a, a^{4+1}, a^{7+1}, a^{4+4+1}, a^{4+7+1}, a^{7+7+1}, a^{4+4+4+1}, \ldots\}$. Регулярное выражение для $\Pi(a)$: $(a^4 | a^7)^* \circ a$.

Мы уже умеем фильтровать некоторые регулярные модальные логики:

- Логика $K4 = K \oplus (\Box p \to \Box \Box p)$ соответствует рег. грамматике $\Pi = \{a \to aa\}$. Регулярное выражение для $\Pi(a)$: a^+ .
- Логика $\mathbf{S4} = \mathbf{K4} \oplus (\Box p \to p)$ соответствует рег. грамматике $\Pi = \{a \to aa, \ a \to \varepsilon\}$. Регулярное выражение для $\Pi(a)$: a^* .
- Логика $\mathsf{K} \oplus (\Box p \to \Box^n \Box p)$ соответствует рег. грамматике $\Pi = \{a \to a^n a\}$. Регулярное выражение для $\Pi(a)$: $(a^n)^* \circ a$.
- Логика K \oplus { $\Box p \to \Box^4 \Box p, \ \Box p \to \Box^7 \Box p$ }. Регулярная грамматика: $\Pi = \{a \to a^4 a, \ a \to a^6 a\}$. Язык: $\Pi(a) = \{a, a^{4+1}, a^{7+1}, a^{4+4+1}, a^{4+7+1}, a^{7+7+1}, a^{4+4+4+1}, \ldots\}$. Регулярное выражение для $\Pi(a)$: $(a^4 | a^7)^* \circ a$.

Мы пока не строили фильтрацию для таких регулярных логик:

Мы уже умеем фильтровать некоторые регулярные модальные логики:

- Логика $K4 = K \oplus (\Box p \to \Box \Box p)$ соответствует рег. грамматике $\Pi = \{a \to aa\}$. Регулярное выражение для $\Pi(a)$: a^+ .
- Логика $\mathbf{S4} = \mathbf{K4} \oplus (\Box p \to p)$ соответствует рег. грамматике $\Pi = \{a \to aa, \ a \to \varepsilon\}$. Регулярное выражение для $\Pi(a)$: a^* .
- Логика $\mathbf{K} \oplus (\Box p \to \Box^n \Box p)$ соответствует рег. грамматике $\Pi = \{a \to a^n a\}$. Регулярное выражение для $\Pi(a)$: $(a^n)^* \circ a$.
- Логика K \oplus { $\Box p \to \Box^4 \Box p, \ \Box p \to \Box^7 \Box p$ }. Регулярная грамматика: $\Pi = \{a \to a^4 a, \ a \to a^6 a\}$. Язык: $\Pi(a) = \{a, a^{4+1}, a^{7+1}, a^{4+4+1}, a^{4+7+1}, a^{7+7+1}, a^{4+4+4+1}, \ldots\}$. Регулярное выражение для $\Pi(a)$: $(a^4|a^7)^* \circ a$.

Мы пока не строили фильтрацию для таких регулярных логик:

• $\mathsf{K}_2 \oplus (\Box_s p \to \Box_r \Box_s p)$ — соотв. рег. грамматике $\Pi = \{s \to rs\}$.

Мы уже умеем фильтровать некоторые регулярные модальные логики:

- Логика K4 = K \oplus ($\Box p \to \Box \Box p$) соответствует рег. грамматике $\Pi = \{a \to aa\}$. Регулярное выражение для $\Pi(a)$: a^+ .
- Логика $\mathbf{S4} = \mathbf{K4} \oplus (\Box p \to p)$ соответствует рег. грамматике $\Pi = \{a \to aa, \ a \to \varepsilon\}$. Регулярное выражение для $\Pi(a)$: a^* .
- Логика $\mathbf{K} \oplus (\Box p \to \Box^n \Box p)$ соответствует рег. грамматике $\Pi = \{a \to a^n a\}$. Регулярное выражение для $\Pi(a)$: $(a^n)^* \circ a$.
- Логика K \oplus { $\Box p \to \Box^4 \Box p, \ \Box p \to \Box^7 \Box p$ }. Регулярная грамматика: $\Pi = \{a \to a^4 a, \ a \to a^6 a\}$. Язык: $\Pi(a) = \{a, a^{4+1}, a^{7+1}, a^{4+4+1}, a^{4+7+1}, a^{7+7+1}, a^{4+4+4+1}, \ldots\}$. Регулярное выражение для $\Pi(a)$: $(a^4|a^7)^* \circ a$.

Мы пока не строили фильтрацию для таких регулярных логик:

• $\mathbf{K}_2 \oplus (\Box_s p \to \Box_r \Box_s p)$ — соотв. рег. грамматике $\Pi = \{s \to rs\}$. Регулярное выражение: r^*s .

Мы уже умеем фильтровать некоторые регулярные модальные логики:

- Логика $K4 = K \oplus (\Box p \to \Box \Box p)$ соответствует рег. грамматике $\Pi = \{a \to aa\}$. Регулярное выражение для $\Pi(a)$: a^+ .
- Логика $\mathbf{S4} = \mathbf{K4} \oplus (\Box p \to p)$ соответствует рег. грамматике $\Pi = \{a \to aa, \ a \to \varepsilon\}$. Регулярное выражение для $\Pi(a)$: a^* .
- Логика $\mathbf{K} \oplus (\Box p \to \Box^n \Box p)$ соответствует рег. грамматике $\Pi = \{a \to a^n a\}$. Регулярное выражение для $\Pi(a)$: $(a^n)^* \circ a$.
- Логика K \oplus { $\Box p \to \Box^4 \Box p, \ \Box p \to \Box^7 \Box p$ }. Регулярная грамматика: $\Pi = \{a \to a^4 a, \ a \to a^6 a\}$. Язык: $\Pi(a) = \{a, a^{4+1}, a^{7+1}, a^{4+4+1}, a^{4+7+1}, a^{7+7+1}, a^{4+4+4+1}, \ldots\}$. Регулярное выражение для $\Pi(a)$: $(a^4|a^7)^* \circ a$.

Мы пока не строили фильтрацию для таких регулярных логик:

- $\mathbf{K}_2 \oplus (\Box_s p \to \Box_r \Box_s p)$ соотв. рег. грамматике $\Pi = \{s \to rs\}$. Регулярное выражение: r^*s .
- ullet K $_2\oplus (\Box_s p o\Box_s\Box_r p)$ соотв. рег. грамматике $\Pi=\{s o sr\}.$

Мы уже умеем фильтровать некоторые регулярные модальные логики:

- Логика $K4 = K \oplus (\Box p \to \Box \Box p)$ соответствует рег. грамматике $\Pi = \{a \to aa\}$. Регулярное выражение для $\Pi(a)$: a^+ .
- Логика $\mathbf{S4} = \mathbf{K4} \oplus (\Box p \to p)$ соответствует рег. грамматике $\Pi = \{a \to aa, \ a \to \varepsilon\}$. Регулярное выражение для $\Pi(a)$: a^* .
- Логика $\mathbf{K} \oplus (\Box p \to \Box^n \Box p)$ соответствует рег. грамматике $\Pi = \{a \to a^n a\}$. Регулярное выражение для $\Pi(a)$: $(a^n)^* \circ a$.
- Логика K \oplus { $\Box p \to \Box^4 \Box p, \ \Box p \to \Box^7 \Box p$ }. Регулярная грамматика: $\Pi = \{a \to a^4 a, \ a \to a^6 a\}$. Язык: $\Pi(a) = \{a, a^{4+1}, a^{7+1}, a^{4+4+1}, a^{4+7+1}, a^{7+7+1}, a^{4+4+4+1}, \ldots\}$. Регулярное выражение для $\Pi(a)$: $(a^4|a^7)^* \circ a$.

Мы пока не строили фильтрацию для таких регулярных логик:

- $\mathbf{K}_2 \oplus (\Box_s p \to \Box_r \Box_s p)$ соотв. рег. грамматике $\Pi = \{s \to rs\}$. Регулярное выражение: r^*s .
- $\mathbf{K}_2 \oplus (\Box_s p \to \Box_s \Box_r p)$ соотв. рег. грамматике $\Pi = \{s \to sr\}$. Регулярное выражение: sr^* .

Фильтрация для логики $\mathsf{K}\Pi$ грамматики $\Pi = \{s o rs\}$

Теорема

Логика $L=\mathsf{K}_2 \,\oplus\, \Box_s p o \Box_r \Box_s p$ допускает фильтрацию \Rightarrow разрешима.

Фильтрация для логики $\mathsf{K}\Pi$ грамматики $\Pi = \{s o rs\}$

Теорема

Логика $L=\mathsf{K}_2 \oplus \Box_s p o \Box_r \Box_s p$ допускает фильтрацию \Rightarrow разрешима.

Доказательство.

Дана модель M = (W, R, S, V) со шкалой F = (W, R, S), такой что $F \models L$, то есть $S \supseteq R \circ S$.

Теорема

Логика $L=\mathsf{K}_2\,\oplus\,\Box_s p o \Box_r\Box_s p$ допускает фильтрацию \Rightarrow разрешима.

Доказательство.

Дана модель M = (W, R, S, V) со шкалой F = (W, R, S), такой что $F \models L$, то есть $S \supseteq R \circ S$.

Дано конечное Sub-замкнутое множество формул $\Gamma \subseteq \operatorname{Fm}(\square_r, \square_s)$.

Теорема

Логика $L=\mathsf{K}_2 \,\oplus\, \Box_s p o \Box_r \Box_s p$ допускает фильтрацию \Rightarrow разрешима.

Доказательство.

Дана модель M=(W,R,S,V) со шкалой F=(W,R,S), такой что $F\models L$, то есть $S\supseteq R\circ S$.

Дано конечное Sub-замкнутое множество формул $\Gamma \subseteq \operatorname{Fm}(\square_r, \square_s)$.

Надо построить модель $\widehat{M}=(\widehat{F},\widehat{V})$ со шкалой $\widehat{F}=(\widehat{W},\widehat{R},\widehat{S})$,

Теорема

Логика $L=\mathsf{K}_2 \,\oplus\, \Box_s p o \Box_r \Box_s p$ допускает фильтрацию \Rightarrow разрешима.

Доказательство.

Дана модель M = (W, R, S, V) со шкалой F = (W, R, S), такой что $F \models L$, то есть $S \supseteq R \circ S$.

Дано конечное Sub-замкнутое множество формул $\Gamma \subseteq \operatorname{Fm}(\square_r, \square_s)$.

Надо построить модель $\widehat{M}=(\widehat{F},\widehat{V})$ со шкалой $\widehat{F}=(\widehat{W},\widehat{R},\widehat{S})$, где $\widehat{W}=W/\equiv_{\Phi}$ для некоторого конечного Sub-замкнутого множества формул $\Phi\supseteq \Gamma$,

Теорема

Логика $L=\mathsf{K}_2 \,\oplus\, \Box_s p o \Box_r \Box_s p$ допускает фильтрацию \Rightarrow разрешима.

Доказательство.

Дана модель M=(W,R,S,V) со шкалой F=(W,R,S), такой что $F\models L$, то есть $S\supseteq R\circ S$.

Дано конечное Sub-замкнутое множество формул $\Gamma \subseteq \operatorname{Fm}(\square_r, \square_s)$.

Надо построить модель $\widehat{M}=(\widehat{F},\widehat{V})$ со шкалой $\widehat{F}=(\widehat{W},\widehat{R},\widehat{S})$, где $\widehat{W}=W/\equiv_{\Phi}$ для некоторого конечного Sub-замкнутого множества формул $\Phi\supseteq \Gamma$, так чтобы:

 $f \hat{F}$ была L-шкалой, то есть Π -шкалой, то есть $\hat{S}\supseteq\hat{R}\circ\hat{S},$

Теорема

Логика $L=\mathsf{K}_2 \,\oplus\, \Box_s p o \Box_r \Box_s p$ допускает фильтрацию \Rightarrow разрешима.

Доказательство.

Дана модель M=(W,R,S,V) со шкалой F=(W,R,S), такой что $F\models L$, то есть $S\supseteq R\circ S$.

Дано конечное Sub-замкнутое множество формул $\Gamma \subseteq \operatorname{Fm}(\square_r, \square_s)$.

Надо построить модель $\widehat{M}=(\widehat{F},\widehat{V})$ со шкалой $\widehat{F}=(\widehat{W},\widehat{R},\widehat{S})$, где $\widehat{W}=W/\equiv_{\Phi}$ для некоторого конечного Sub-замкнутого множества формул $\Phi\supseteq \Gamma$, так чтобы:

- f O \widehat{F} была L-шкалой, то есть Π -шкалой, то есть $\widehat{S}\supseteq\widehat{R}\circ\widehat{S}$,
- $R_{\Phi}^{\min} \subseteq \widehat{R} \subseteq R_{\Gamma}^{\max},$

Теорема

Логика $L=\mathsf{K}_2 \,\oplus\, \Box_s p o \Box_r \Box_s p$ допускает фильтрацию \Rightarrow разрешима.

Доказательство.

Дана модель M = (W, R, S, V) со шкалой F = (W, R, S), такой что $F \models L$, то есть $S \supseteq R \circ S$.

Дано конечное Sub-замкнутое множество формул $\Gamma \subseteq \operatorname{Fm}(\square_r, \square_s)$.

Надо построить модель $\widehat{M}=(\widehat{F},\widehat{V})$ со шкалой $\widehat{F}=(\widehat{W},\widehat{R},\widehat{S})$, где $\widehat{W}=W/\equiv_{\Phi}$ для некоторого конечного Sub-замкнутого множества формул $\Phi\supseteq \Gamma$, так чтобы:

- f O \widehat{F} была L-шкалой, то есть Π -шкалой, то есть $\widehat{S}\supseteq\widehat{R}\circ\widehat{S}$,
- $R_{\Phi}^{\min} \subseteq \widehat{R} \subseteq R_{\Gamma}^{\max},$
- $\mathbf{3} \ S_{\Phi}^{\min} \subseteq \widehat{S} \subseteq S_{\Gamma}^{\max}.$

Логика $L=\mathsf{K}_2\,\oplus\,\Box_s p o\Box_r\Box_s p$ допускает фильтрацию \Rightarrow разрешима.

Доказательство.

Дано: модель M = (W, R, S, V), $S \supseteq R \circ S$, и множество формул Γ . **Надо**: построить $\widehat{M} = (\widehat{F}, \widehat{V})$, где $\Phi \supseteq \Gamma$, так чтобы выполнились:

$$(1) \ \widehat{S} \supseteq \widehat{R} \circ \widehat{S}, \qquad (2) \ R_{\Phi}^{\mathsf{min}} \subseteq \widehat{R} \subseteq R_{\Gamma}^{\mathsf{max}}, \qquad (3) \ S_{\Phi}^{\mathsf{min}} \subseteq \widehat{S} \subseteq S_{\Gamma}^{\mathsf{max}}.$$

Логика $L=\mathsf{K}_2\,\oplus\,\Box_s p o \Box_r\Box_s p$ допускает фильтрацию \Rightarrow разрешима.

Доказательство.

Дано: модель M = (W, R, S, V), $S \supseteq R \circ S$, и множество формул Γ . **Надо**: построить $\widehat{M} = (\widehat{F}, \widehat{V})$, где $\Phi \supseteq \Gamma$, так чтобы выполнились:

$$(1) \ \widehat{S} \supseteq \widehat{R} \circ \widehat{S}, \qquad (2) \ R_{\Phi}^{\min} \subseteq \widehat{R} \subseteq R_{\Gamma}^{\max}, \qquad (3) \ S_{\Phi}^{\min} \subseteq \widehat{S} \subseteq S_{\Gamma}^{\max}.$$

Строим $\Phi := \Gamma \cup \{\Box_r \Box_s A \mid \Box_s A \in \Gamma\}$ — конечное Sub-замкнутое.

Логика $L=\mathsf{K}_2\,\oplus\,\Box_s p o \Box_r\Box_s p$ допускает фильтрацию \Rightarrow разрешима.

Доказательство.

Дано: модель M=(W,R,S,V), $S\supseteq R\circ S$, и множество формул Γ . **Надо**: построить $\widehat{M}=(\widehat{F},\widehat{V})$, где $\Phi\supseteq \Gamma$, так чтобы выполнились:

$$(1) \ \widehat{S} \supseteq \widehat{R} \circ \widehat{S}, \qquad (2) \ R_{\Phi}^{\min} \subseteq \widehat{R} \subseteq R_{\Gamma}^{\max}, \qquad (3) \ S_{\Phi}^{\min} \subseteq \widehat{S} \subseteq S_{\Gamma}^{\max}.$$

Строим $\Phi := \Gamma \cup \{\Box_r \Box_s A \mid \Box_s A \in \Gamma\}$ — конечное Sub-замкнутое.

Мини-макс шкала: $\widehat{R}=R_{\Phi}^{\min}$, $\widehat{S}=S_{\Gamma}^{\max}$.

Логика $L=\mathsf{K}_2\,\oplus\,\Box_s p o \Box_r\Box_s p$ допускает фильтрацию \Rightarrow разрешима.

Доказательство.

Дано: модель M=(W,R,S,V), $S\supseteq R\circ S$, и множество формул Γ . **Надо**: построить $\widehat{M}=(\widehat{F},\widehat{V})$, где $\Phi\supseteq \Gamma$, так чтобы выполнились:

$$(1) \ \widehat{S} \supseteq \widehat{R} \circ \widehat{S}, \qquad (2) \ R_{\Phi}^{\min} \subseteq \widehat{R} \subseteq R_{\Gamma}^{\max}, \qquad (3) \ S_{\Phi}^{\min} \subseteq \widehat{S} \subseteq S_{\Gamma}^{\max}.$$

Строим
$$\Phi := \Gamma \cup \{\Box_r \Box_s A \mid \Box_s A \in \Gamma\}$$
 — конечное Sub-замкнутое.

Мини-макс шкала: $\widehat{R} = R_{\Phi}^{\min}$, $\widehat{S} = S_{\Gamma}^{\max}$.

Можно \widehat{R} — любое между R_{Φ}^{\min} и R_{Γ}^{\max} .

Логика $L=\mathsf{K}_2 \,\oplus\, \Box_s p o \Box_r \Box_s p$ допускает фильтрацию \Rightarrow разрешима.

Доказательство.

Дано: модель M=(W,R,S,V), $S\supseteq R\circ S$, и множество формул Γ . **Надо**: построить $\widehat{M}=(\widehat{F},\widehat{V})$, где $\Phi\supseteq \Gamma$, так чтобы выполнились:

$$(1) \ \widehat{S} \supseteq \widehat{R} \circ \widehat{S}, \qquad (2) \ R_{\Phi}^{\min} \subseteq \widehat{R} \subseteq R_{\Gamma}^{\max}, \qquad (3) \ S_{\Phi}^{\min} \subseteq \widehat{S} \subseteq S_{\Gamma}^{\max}.$$

Строим $\Phi := \Gamma \cup \{\Box_r \Box_s A \mid \Box_s A \in \Gamma\}$ — конечное Sub-замкнутое.

Мини-макс шкала: $\widehat{R}=R_{\Phi}^{\min}$, $\widehat{S}=S_{\Gamma}^{\max}$.

Можно \widehat{R} — любое между R_{Φ}^{\min} и R_{Γ}^{\max} . Тогда (2) и (3) очевидны.

Логика $L=\mathsf{K}_2 \,\oplus\, \Box_s p o \Box_r \Box_s p$ допускает фильтрацию \Rightarrow разрешима.

Доказательство.

Дано: модель M = (W, R, S, V), $S \supseteq R \circ S$, и множество формул Γ . **Надо**: построить $\widehat{M} = (\widehat{F}, \widehat{V})$, где $\Phi \supseteq \Gamma$, так чтобы выполнились:

$$(1) \ \widehat{S} \supseteq \widehat{R} \circ \widehat{S}, \qquad (2) \ R_{\Phi}^{\min} \subseteq \widehat{R} \subseteq R_{\Gamma}^{\max}, \qquad (3) \ S_{\Phi}^{\min} \subseteq \widehat{S} \subseteq S_{\Gamma}^{\max}.$$

Строим $\Phi := \Gamma \cup \{\Box_r \Box_s A \mid \Box_s A \in \Gamma\}$ — конечное Sub-замкнутое.

Мини-макс шкала: $\widehat{R}=R_{\Phi}^{\mathsf{min}}$, $\widehat{S}=S_{\Gamma}^{\mathsf{max}}$.

Можно \widehat{R} — любое между R_{Φ}^{\min} и R_{Γ}^{\max} . Тогда (2) и (3) очевидны.

Утверждение. $\widehat{S}\supseteq\widehat{R}\circ\widehat{S}.$ Более того, $S_{\Gamma}^{\max}\supseteq R_{\Phi}^{\max}\circ S_{\Gamma}^{\max}$

Логика $L=\mathsf{K}_2 \,\oplus\, \Box_s p o \Box_r \Box_s p$ допускает фильтрацию \Rightarrow разрешима.

Доказательство.

Дано: модель M = (W, R, S, V), $S \supseteq R \circ S$, и множество формул Г. **Надо**: построить $\widehat{M} = (\widehat{F}, \widehat{V})$, где $\Phi \supseteq \Gamma$, так чтобы выполнились:

$$(1) \ \widehat{S} \supseteq \widehat{R} \circ \widehat{S}, \qquad (2) \ R_{\Phi}^{\min} \subseteq \widehat{R} \subseteq R_{\Gamma}^{\max}, \qquad (3) \ S_{\Phi}^{\min} \subseteq \widehat{S} \subseteq S_{\Gamma}^{\max}.$$

Строим $\Phi := \Gamma \cup \{\Box_r \Box_s A \mid \Box_s A \in \Gamma\}$ — конечное Sub-замкнутое.

Мини-макс шкала: $\widehat{R}=R_{\Phi}^{\mathsf{min}}$, $\widehat{S}=S_{\Gamma}^{\mathsf{max}}$.

Можно \widehat{R} — любое между R_{Φ}^{\min} и R_{Γ}^{\max} . Тогда (2) и (3) очевидны.

Утверждение. $\widehat{S}\supseteq\widehat{R}\circ\widehat{S}.$ Более того, $\boxed{S_{\Gamma}^{\sf max}\ \supseteq\ R_{\Phi}^{\sf max}\circ S_{\Gamma}^{\sf max}}$

Доказательство. Пусть $\widehat{x}(R_{\Phi}^{\max})\widehat{y}(S_{\Gamma}^{\max})\widehat{z}$.

Логика $L=\mathsf{K}_2 \,\oplus\, \Box_s p o \Box_r \Box_s p$ допускает фильтрацию \Rightarrow разрешима.

Доказательство.

Дано: модель M = (W, R, S, V), $S \supseteq R \circ S$, и множество формул Γ . **Надо**: построить $\widehat{M} = (\widehat{F}, \widehat{V})$, где $\Phi \supseteq \Gamma$, так чтобы выполнились:

$$(1) \ \widehat{S} \supseteq \widehat{R} \circ \widehat{S}, \qquad (2) \ R_{\Phi}^{\min} \subseteq \widehat{R} \subseteq R_{\Gamma}^{\max}, \qquad (3) \ S_{\Phi}^{\min} \subseteq \widehat{S} \subseteq S_{\Gamma}^{\max}.$$

Строим $\Phi := \Gamma \cup \{\Box_r \Box_s A \mid \Box_s A \in \Gamma\}$ — конечное Sub-замкнутое.

Мини-макс шкала: $\widehat{R}=R_{\Phi}^{\mathsf{min}}$, $\widehat{S}=S_{\Gamma}^{\mathsf{max}}$.

Можно \widehat{R} — любое между R_{Φ}^{\min} и R_{Γ}^{\max} . Тогда (2) и (3) очевидны.

Утверждение. $\widehat{S}\supseteq\widehat{R}\circ\widehat{S}.$ Более того, $\boxed{S_{\Gamma}^{\sf max}\ \supseteq\ R_{\Phi}^{\sf max}\circ S_{\Gamma}^{\sf max}}$

Доказательство. Пусть $\widehat{x}(R_{\Phi}^{\max})\widehat{y}(S_{\Gamma}^{\max})\widehat{z}$. Почему $\widehat{x}(S_{\Gamma}^{\max})\widehat{z}$?

Логика $L=\mathsf{K}_2 \,\oplus\, \Box_s p o \Box_r \Box_s p$ допускает фильтрацию \Rightarrow разрешима.

Доказательство.

Дано: модель M = (W, R, S, V), $S \supseteq R \circ S$, и множество формул Г. **Надо**: построить $\widehat{M} = (\widehat{F}, \widehat{V})$, где $\Phi \supseteq \Gamma$, так чтобы выполнились:

$$(1) \ \widehat{S} \supseteq \widehat{R} \circ \widehat{S}, \qquad (2) \ R_{\Phi}^{\min} \subseteq \widehat{R} \subseteq R_{\Gamma}^{\max}, \qquad (3) \ S_{\Phi}^{\min} \subseteq \widehat{S} \subseteq S_{\Gamma}^{\max}.$$

Строим $\Phi := \Gamma \cup \{\Box_r \Box_s A \mid \Box_s A \in \Gamma\}$ — конечное Sub-замкнутое.

Мини-макс шкала: $\widehat{R}=R_{\Phi}^{\min}$, $\widehat{S}=S_{\Gamma}^{\max}$.

Можно \widehat{R} — любое между R_{Φ}^{\min} и R_{Γ}^{\max} . Тогда (2) и (3) очевидны.

Утверждение. $\widehat{S}\supseteq\widehat{R}\circ\widehat{S}.$ Более того, $\boxed{S_{\Gamma}^{\sf max}\ \supseteq\ R_{\Phi}^{\sf max}\circ S_{\Gamma}^{\sf max}}$

Доказательство. Пусть $\widehat{x}(R_{\Gamma}^{\text{max}})\widehat{y}(S_{\Gamma}^{\text{max}})\widehat{z}$. Почему $\widehat{x}(S_{\Gamma}^{\text{max}})\widehat{z}$?

Берем любую формулу $\square_s A \in \Gamma$. Тогда $\square_r \square_s A \in \Phi$. Имеем:

Логика $L=\mathsf{K}_2 \,\oplus\, \Box_s p o \Box_r \Box_s p$ допускает фильтрацию \Rightarrow разрешима.

Доказательство.

Дано: модель M=(W,R,S,V), $S\supseteq R\circ S$, и множество формул Г. **Надо**: построить $\widehat{M}=(\widehat{F},\widehat{V})$, где $\Phi\supseteq \Gamma$, так чтобы выполнились:

$$(1) \ \widehat{S} \supseteq \widehat{R} \circ \widehat{S}, \qquad (2) \ R_{\Phi}^{\min} \subseteq \widehat{R} \subseteq R_{\Gamma}^{\max}, \qquad (3) \ S_{\Phi}^{\min} \subseteq \widehat{S} \subseteq S_{\Gamma}^{\max}.$$

Строим $\Phi := \Gamma \cup \{\Box_r \Box_s A \mid \Box_s A \in \Gamma\}$ — конечное Sub-замкнутое.

Мини-макс шкала: $\widehat{R} = R_{\Phi}^{\min}$, $\widehat{S} = S_{\Gamma}^{\max}$.

Можно \widehat{R} — любое между R_{Φ}^{\min} и R_{Γ}^{\max} . Тогда (2) и (3) очевидны.

Утверждение. $\widehat{S}\supseteq\widehat{R}\circ\widehat{S}.$ Более того, $\boxed{S_{\Gamma}^{\mathsf{max}}\ \supseteq\ R_{\Phi}^{\mathsf{max}}\circ S_{\Gamma}^{\mathsf{max}}}$

Доказательство. Пусть $\widehat{x}\left(R_{\Phi}^{\mathsf{max}}\right)\widehat{y}\left(S_{\Gamma}^{\mathsf{max}}\right)\widehat{z}$. Почему $\widehat{x}\left(S_{\Gamma}^{\mathsf{max}}\right)\widehat{z}$?

Берем любую формулу $\square_s A \in \Gamma$. Тогда $\square_r \square_s A \in \Phi$. Имеем:

$$x \models \Box_s A$$

Логика $L=\mathsf{K}_2 \,\oplus\, \Box_s p o \Box_r \Box_s p$ допускает фильтрацию \Rightarrow разрешима.

Доказательство.

Дано: модель M=(W,R,S,V), $S\supseteq R\circ S$, и множество формул Г. **Надо**: построить $\widehat{M}=(\widehat{F},\widehat{V})$, где $\Phi\supseteq \Gamma$, так чтобы выполнились:

$$(1) \ \widehat{S} \supseteq \widehat{R} \circ \widehat{S}, \qquad (2) \ R_{\Phi}^{\min} \subseteq \widehat{R} \subseteq R_{\Gamma}^{\max}, \qquad (3) \ S_{\Phi}^{\min} \subseteq \widehat{S} \subseteq S_{\Gamma}^{\max}.$$

Строим $\Phi := \Gamma \cup \{\Box_r \Box_s A \mid \Box_s A \in \Gamma\}$ — конечное Sub-замкнутое.

Мини-макс шкала: $\widehat{R} = R_{\Phi}^{\min}$, $\widehat{S} = S_{\Gamma}^{\max}$.

Можно \widehat{R} — любое между R_{Φ}^{\min} и R_{Γ}^{\max} . Тогда (2) и (3) очевидны.

Утверждение. $\widehat{S}\supseteq\widehat{R}\circ\widehat{S}.$ Более того, $\boxed{S_{\Gamma}^{\mathsf{max}}\ \supseteq\ R_{\Phi}^{\mathsf{max}}\circ S_{\Gamma}^{\mathsf{max}}}$

Доказательство. Пусть $\widehat{x}(R_{\Phi}^{\max})\widehat{y}(S_{\Gamma}^{\max})\widehat{z}$. Почему $\widehat{x}(S_{\Gamma}^{\max})\widehat{z}$? Берем любую формулу $\square_s A \in \Gamma$. Тогда $\square_r \square_s A \in \Phi$. Имеем:

$$x \models \Box_s A \implies x \models \Box_r \Box_s A$$

Логика $L=\mathsf{K}_2 \,\oplus\, \Box_s p o \Box_r \Box_s p$ допускает фильтрацию \Rightarrow разрешима.

Доказательство.

Дано: модель M = (W, R, S, V), $S \supseteq R \circ S$, и множество формул Γ . **Надо**: построить $\widehat{M} = (\widehat{F}, \widehat{V})$, где $\Phi \supseteq \Gamma$, так чтобы выполнились:

$$(1) \ \widehat{S} \supseteq \widehat{R} \circ \widehat{S}, \qquad (2) \ R_{\Phi}^{\min} \subseteq \widehat{R} \subseteq R_{\Gamma}^{\max}, \qquad (3) \ S_{\Phi}^{\min} \subseteq \widehat{S} \subseteq S_{\Gamma}^{\max}.$$

Строим $\Phi := \Gamma \cup \{\Box_r \Box_s A \mid \Box_s A \in \Gamma\}$ — конечное Sub-замкнутое.

Мини-макс шкала: $\widehat{R} = R_{\Phi}^{\min}$, $\widehat{S} = S_{\Gamma}^{\max}$.

Можно \widehat{R} — любое между R_{Φ}^{\min} и R_{Γ}^{\max} . Тогда (2) и (3) очевидны.

Утверждение. $\widehat{S}\supseteq\widehat{R}\circ\widehat{S}.$ Более того, $\boxed{S_{\Gamma}^{\mathsf{max}}\ \supseteq\ R_{\Phi}^{\mathsf{max}}\circ S_{\Gamma}^{\mathsf{max}}}$

Доказательство. Пусть $\widehat{x}\left(R_{\Phi}^{\mathsf{max}}\right)\widehat{y}\left(S_{\Gamma}^{\mathsf{max}}\right)\widehat{z}$. Почему $\widehat{x}\left(S_{\Gamma}^{\mathsf{max}}\right)\widehat{z}$? Берем любую формулу $\square_{\mathsf{s}}A\in\Gamma$. Тогда $\square_{\mathsf{r}}\square_{\mathsf{s}}A\in\Phi$. Имеем:

$$x \models \Box_s A \implies x \models \Box_r \Box_s A \implies y \models \Box_s A$$

Логика $L=\mathsf{K}_2\,\oplus\,\Box_s p o \Box_r\Box_s p$ допускает фильтрацию \Rightarrow разрешима.

Доказательство.

Дано: модель M=(W,R,S,V), $S\supseteq R\circ S$, и множество формул Γ . **Надо**: построить $\widehat{M}=(\widehat{F},\widehat{V})$, где $\Phi\supseteq \Gamma$, так чтобы выполнились:

$$(1) \ \widehat{S} \supseteq \widehat{R} \circ \widehat{S}, \qquad (2) \ R_{\Phi}^{\min} \subseteq \widehat{R} \subseteq R_{\Gamma}^{\max}, \qquad (3) \ S_{\Phi}^{\min} \subseteq \widehat{S} \subseteq S_{\Gamma}^{\max}.$$

Строим $\Phi := \Gamma \cup \{\Box_r \Box_s A \mid \Box_s A \in \Gamma\}$ — конечное Sub-замкнутое.

Мини-макс шкала: $\widehat{R}=R_{\Phi}^{\min}$, $\widehat{S}=S_{\Gamma}^{\max}$.

Можно \widehat{R} — любое между R_{Φ}^{\min} и R_{Γ}^{\max} . Тогда (2) и (3) очевидны.

Утверждение. $\widehat{S}\supseteq\widehat{R}\circ\widehat{S}.$ Более того, $\boxed{S_{\Gamma}^{\sf max}\ \supseteq\ R_{\Phi}^{\sf max}\circ S_{\Gamma}^{\sf max}}$

Доказательство. Пусть $\widehat{x}(R_{\Phi}^{\max})\widehat{y}(S_{\Gamma}^{\max})\widehat{z}$. Почему $\widehat{x}(S_{\Gamma}^{\max})\widehat{z}$? Берем любую формулу $\square_s A \in \Gamma$. Тогда $\square_r \square_s A \in \Phi$. Имеем:

$$x \models \Box_s A \implies x \models \Box_r \Box_s A \implies y \models \Box_s A \implies z \models A.$$

Пробуем для логики $\mathsf{K}\Pi$ грамматики $\Pi = \{s o sr\}$

Теорема

Логика $L=\mathsf{K}_2 \,\oplus\, \Box_s p o \Box_s \Box_r p$ допускает фильтрацию \Rightarrow разрешима.

Пробуем для логики **K** Π грамматики $\Pi = \{s \rightarrow sr\}$

Теорема

Логика $L = \mathbb{K}_2 \oplus \square_{\mathfrak{s}} p \to \square_{\mathfrak{s}} \square_{\mathfrak{r}} p$ допускает фильтрацию \Rightarrow разрешима.

Попытка доказательства.

Строим $\Phi := \Gamma \cup \mathsf{Sub}\{\Box_{\mathsf{s}}\Box_{\mathsf{r}}A \mid \Box_{\mathsf{s}}A \in \Gamma\}$ — это конечное мн-во.

Пробуем для логики $\mathsf{K}\Pi$ грамматики $\Pi = \{s o sr\}$

Теорема

Логика $L=\mathsf{K}_2 \,\oplus\, \Box_s p o \Box_s \Box_r p$ допускает фильтрацию \Rightarrow разрешима.

Попытка доказательства.

Строим $\Phi := \Gamma \cup \mathsf{Sub}\{\Box_s\Box_r A \ | \ \Box_s A \in \Gamma\}$ — это конечное мн-во.

Попытаемся доказать: $S_{\Gamma}^{\max} \supseteq S_{\Gamma}^{\max} \circ R_{\Phi}^{\max}$???

Теорема

Логика $L=\mathsf{K}_2 \,\oplus\, \Box_s p o \Box_s \Box_r p$ допускает фильтрацию \Rightarrow разрешима.

Попытка доказательства.

Строим $\Phi := \Gamma \cup \mathsf{Sub}\{\Box_s\Box_r A \ | \ \Box_s A \in \Gamma\}$ — это конечное мн-во.

Попытаемся доказать: $S_{\Gamma}^{\max} \supseteq S_{\Gamma}^{\max} \circ R_{\Phi}^{\max}$???

Пусть $\widehat{x}\left(S_{\Gamma}^{\mathsf{max}}\right)\widehat{y}\left(R_{\Phi}^{\mathsf{max}}\right)\widehat{z}.$

Теорема

Логика $L=\mathsf{K}_2 \,\oplus\, \Box_s p o \Box_s \Box_r p$ допускает фильтрацию \Rightarrow разрешима.

Попытка доказательства.

Строим $\Phi := \Gamma \cup \mathsf{Sub}\{\Box_s\Box_r A \ | \ \Box_s A \in \Gamma\}$ — это конечное мн-во.

Попытаемся доказать: $S_{\Gamma}^{\max} \supseteq S_{\Gamma}^{\max} \circ R_{\Phi}^{\max}$???

Пусть $\widehat{x}\left(S_{\Gamma}^{\mathsf{max}}\right)\widehat{y}\left(R_{\Phi}^{\mathsf{max}}\right)\widehat{z}$. Почему $\widehat{x}\left(S_{\Gamma}^{\mathsf{max}}\right)\widehat{z}$?

Теорема

Логика $L=\mathsf{K}_2 \,\oplus\, \Box_s p o \Box_s \Box_r p$ допускает фильтрацию \Rightarrow разрешима.

Попытка доказательства.

Строим $\Phi := \Gamma \cup \mathsf{Sub}\{\Box_s\Box_r A \mid \Box_s A \in \Gamma\}$ — это конечное мн-во.

Попытаемся доказать: $S_{\Gamma}^{\max} \supseteq S_{\Gamma}^{\max} \circ R_{\Phi}^{\max}$???

Пусть $\widehat{x}\left(S_{\Gamma}^{\mathsf{max}}\right)\widehat{y}\left(R_{\Phi}^{\mathsf{max}}\right)\widehat{z}$. Почему $\widehat{x}\left(S_{\Gamma}^{\mathsf{max}}\right)\widehat{z}$?

Берем любую формулу $\square_s A \in \Gamma$. Тогда $\square_s \square_r A \in \Phi$. Имеем:

Теорема

Логика $L=\mathsf{K}_2 \,\oplus\, \Box_s p o \Box_s \Box_r p$ допускает фильтрацию \Rightarrow разрешима.

Попытка доказательства.

Строим $\Phi := \Gamma \cup \mathsf{Sub}\{\Box_s\Box_r A \mid \Box_s A \in \Gamma\}$ — это конечное мн-во.

Попытаемся доказать: $S_{\Gamma}^{\max} \supseteq S_{\Gamma}^{\max} \circ R_{\Phi}^{\max}$???

Пусть $\widehat{x}\left(S_{\Gamma}^{\mathsf{max}}\right)\widehat{y}\left(R_{\Phi}^{\mathsf{max}}\right)\widehat{z}$. Почему $\widehat{x}\left(S_{\Gamma}^{\mathsf{max}}\right)\widehat{z}$?

Берем любую формулу $\square_s A \in \Gamma$. Тогда $\square_s \square_r A \in \Phi$. Имеем:

$$x \models \Box_s A \implies x \models \Box_s \Box_r A \stackrel{???}{\Longrightarrow} y \models \Box_r A \implies z \models A.$$

Теорема

Логика $L=\mathsf{K}_2 \,\oplus\, \Box_s p o \Box_s \Box_r p$ допускает фильтрацию \Rightarrow разрешима.

Попытка доказательства.

Строим $\Phi := \Gamma \cup \mathsf{Sub}\{\Box_s\Box_r A \mid \Box_s A \in \Gamma\}$ — это конечное мн-во.

Попытаемся доказать:
$$S_{\Gamma}^{\max} \supseteq S_{\Gamma}^{\max} \circ R_{\Phi}^{\max}$$
???

Пусть
$$\widehat{x}\left(S_{\Gamma}^{\mathsf{max}}\right)\widehat{y}\left(R_{\Phi}^{\mathsf{max}}\right)\widehat{z}$$
. Почему $\widehat{x}\left(S_{\Gamma}^{\mathsf{max}}\right)\widehat{z}$?

Берем любую формулу $\square_s A \in \Gamma$. Тогда $\square_s \square_r A \in \Phi$. Имеем:

$$x \models \Box_s A \implies x \models \Box_s \Box_r A \stackrel{???}{\Longrightarrow} y \models \Box_r A \implies z \models A.$$

Ведь \widehat{x} и \widehat{y} связаны лишь отношением S^{\max}_{Γ} — по Γ , а не по Φ !

Теорема

Логика $L=\mathsf{K}_2 \,\oplus\, \Box_s p o \Box_s \Box_r p$ допускает фильтрацию \Rightarrow разрешима.

Попытка доказательства.

Строим $\Phi := \Gamma \cup \mathsf{Sub}\{\Box_s\Box_r A \mid \Box_s A \in \Gamma\}$ — это конечное мн-во.

Попытаемся доказать: $S_{\Gamma}^{\max} \supseteq S_{\Gamma}^{\max} \circ R_{\Phi}^{\max}$???

Пусть $\widehat{x}\left(S_{\Gamma}^{\mathsf{max}}\right)\widehat{y}\left(R_{\Phi}^{\mathsf{max}}\right)\widehat{z}$. Почему $\widehat{x}\left(S_{\Gamma}^{\mathsf{max}}\right)\widehat{z}$?

Берем любую формулу $\square_s A \in \Gamma$. Тогда $\square_s \square_r A \in \Phi$. Имеем:

$$x \models \Box_s A \implies x \models \Box_s \Box_r A \stackrel{???}{\Longrightarrow} y \models \Box_r A \implies z \models A.$$

Ведь \widehat{x} и \widehat{y} связаны лишь отношением S^{\max}_{Γ} — по Γ , а не по Φ ! Даже если вместо R^{\max}_{Φ} возьмем R^{\min}_{Φ} , шаг от x к y не проходит.

Теорема

Логика $L=\mathsf{K}_2 \,\oplus\, \Box_s p o \Box_s \Box_r p$ допускает фильтрацию \Rightarrow разрешима.

Попытка доказательства.

Строим $\Phi := \Gamma \cup \mathsf{Sub}\{\Box_s\Box_r A \mid \Box_s A \in \Gamma\}$ — это конечное мн-во.

Попытаемся доказать: $S_{\Gamma}^{\max} \supseteq S_{\Gamma}^{\max} \circ R_{\Phi}^{\max}$???

Пусть $\widehat{x}\left(S_{\Gamma}^{\mathsf{max}}\right)\widehat{y}\left(R_{\Phi}^{\mathsf{max}}\right)\widehat{z}$. Почему $\widehat{x}\left(S_{\Gamma}^{\mathsf{max}}\right)\widehat{z}$?

Берем любую формулу $\square_s A \in \Gamma$. Тогда $\square_s \square_r A \in \Phi$. Имеем:

$$x \models \Box_s A \implies x \models \Box_s \Box_r A \stackrel{???}{\Longrightarrow} y \models \Box_r A \implies z \models A.$$

Ведь \widehat{x} и \widehat{y} связаны лишь отношением S^{\max}_{Γ} — по Γ , а не по Φ ! Даже если вместо R^{\max}_{Φ} возьмем R^{\min}_{Φ} , шаг от x к y не проходит.

Тем не менее, эта логика допускает фильтрацию.

Пробуем для логики **K** Π грамматики $\Pi = \{s ightarrow sr\}$

Теорема

Логика $L=\mathsf{K}_2 \,\oplus\, \Box_s p o \Box_s \Box_r p$ допускает фильтрацию \Rightarrow разрешима.

Попытка доказательства.

Строим $\Phi := \Gamma \cup \mathsf{Sub}\{\Box_s\Box_r A \mid \Box_s A \in \Gamma\}$ — это конечное мн-во.

Попытаемся доказать:
$$S_{\Gamma}^{\max} \supseteq S_{\Gamma}^{\max} \circ R_{\Phi}^{\max}$$
???

Пусть $\widehat{x}\left(S_{\Gamma}^{\mathsf{max}}\right)\widehat{y}\left(R_{\Phi}^{\mathsf{max}}\right)\widehat{z}$. Почему $\widehat{x}\left(S_{\Gamma}^{\mathsf{max}}\right)\widehat{z}$?

Берем любую формулу $\square_s A \in \Gamma$. Тогда $\square_s \square_r A \in \Phi$. Имеем:

$$x \models \Box_s A \implies x \models \Box_s \Box_r A \stackrel{???}{\Longrightarrow} y \models \Box_r A \implies z \models A.$$

Ведь \widehat{x} и \widehat{y} связаны лишь отношением S_{Γ}^{\max} — по Γ , а не по Φ ! Даже если вместо R_{Φ}^{\max} возьмем R_{Φ}^{\min} , шаг от x к y не проходит.

Тем не менее, эта логика допускает фильтрацию.

Для доказательства нужно привлечь обратные модальности!

Пробуем для логики $\mathsf{K}\Pi$ грамматики $\Pi = \{s o sr\}$

Теорема

Логика $L=\mathsf{K}_2 \,\oplus\, \Box_s p o \Box_s \Box_r p$ допускает фильтрацию \Rightarrow разрешима.

Попытка доказательства.

Строим $\Phi := \Gamma \cup \operatorname{Sub}\{\Box_s\Box_r A \mid \Box_s A \in \Gamma\}$ — это конечное мн-во.

Попытаемся доказать:
$$S_{\Gamma}^{\max} \supseteq S_{\Gamma}^{\max} \circ R_{\Phi}^{\max}$$
???

Пусть
$$\widehat{x}\left(S_{\Gamma}^{\max}\right)\widehat{y}\left(R_{\Phi}^{\max}\right)\widehat{z}$$
. Почему $\widehat{x}\left(S_{\Gamma}^{\max}\right)\widehat{z}$?

Берем любую формулу $\square_s A \in \Gamma$. Тогда $\square_s \square_r A \in \Phi$. Имеем:

$$x \models \Box_s A \implies x \models \Box_s \Box_r A \stackrel{???}{\Longrightarrow} y \models \Box_r A \implies z \models A.$$

Ведь \widehat{x} и \widehat{y} связаны лишь отношением S_{Γ}^{\max} — по Γ , а не по Φ ! Даже если вместо R_{Φ}^{\max} возьмем R_{Φ}^{\min} , шаг от x к y не проходит.

Тем не менее, эта логика допускает фильтрацию.

Для доказательства нужно привлечь обратные модальности!

Тогда «левое» правило $s \to sr$ превратится в «правое» $\overline{s} \to \overline{r}\,\overline{s}$.

Лекция 10: 2-й способ фильтрации для **K4** — через $(R_{\Phi}^{\min})^+$ (транзитивное замыкание минимального отношения).

Лекция 10: 2-й способ фильтрации для ${\sf K4}$ — через $(R_{\Phi}^{\sf min})^+$ (транзитивное замыкание минимального отношения). Грамматика: $\Pi = \{a \to aa\}$.

Лекция 10: 2-й способ фильтрации для K4 — через $(R_{\Phi}^{\min})^+$ (транзитивное замыкание минимального отношения). Грамматика: $\Pi = \{a \to aa\}$.

Язык этой грамматики: $\Pi(a) = \{a, a^2, a^3, \ldots\}.$

```
Лекция 10: 2-й способ фильтрации для K4 — через (R_{\Phi}^{\min})^+ (транзитивное замыкание минимального отношения). Грамматика: \Pi = \{a \to aa\}. Язык этой грамматики: \Pi(a) = \{a, a^2, a^3, \ldots\}. Транзитивное замыкание: R^+ = R \cup R^2 \cup \ldots = \bigcup_{\alpha \in \Pi(a)} R_{\alpha}.
```

```
Лекция 10: 2-й способ фильтрации для K4 — через (R_{\Phi}^{\min})^+ (транзитивное замыкание минимального отношения). Грамматика: \Pi = \{a \to aa\}. Язык этой грамматики: \Pi(a) = \{a, a^2, a^3, \ldots\}. Транзитивное замыкание: R^+ = R \cup R^2 \cup \ldots = \bigcup_{\alpha \in \Pi(a)} R_{\alpha}.
```

Аналогично для других разобранных логик — чтобы построить замыкание отношения R_a , надо взять объединение R_{α} по всем словам из языка $\Pi(a)$.

Как строятся замыкания отношений?

```
Лекция 10: 2-й способ фильтрации для K4 — через (R_{\Phi}^{\min})^+ (транзитивное замыкание минимального отношения). Грамматика: \Pi = \{a \to aa\}. Язык этой грамматики: \Pi(a) = \{a, a^2, a^3, \ldots\}. Транзитивное замыкание: R^+ = R \cup R^2 \cup \ldots = \bigcup_{\alpha \in \Pi(a)} R_{\alpha}.
```

Аналогично для других разобранных логик — чтобы построить замыкание отношения R_a , надо взять объединение R_α по всем словам из языка $\Pi(a)$.

Дадим общее определение.

Пусть $F = (W, (R_a)_{a \in \Sigma})$ — шкала Крипке, Π — КС-грамматика, то есть все правила имеют вид $a \to \beta$.

Пусть $F=(W,(R_a)_{a\in\Sigma})$ — шкала Крипке, Π — KC-грамматика, то есть все правила имеют вид $a\to\beta$.

Определение

 Π -замыкание шкалы F — это шкала $F^{\Pi} = (W, (R_a^{\Pi})_{a \in \Sigma})$, где замыкания отношений определяются так:

$$R_a^{\Pi} := \bigcup_{\alpha \in \Pi(a)} R_{\alpha}.$$

Пусть $F=(W,(R_a)_{a\in\Sigma})$ — шкала Крипке, Π — KC-грамматика, то есть все правила имеют вид $a\to\beta$.

Определение

П-замыкание шкалы F — это шкала $F^{\Pi} = (W, (R_a^{\Pi})_{a \in \Sigma})$, где замыкания отношений определяются так:

$$R_a^{\Pi} := \bigcup_{\alpha \in \Pi(a)} R_{\alpha}.$$

Замечание. Это частный случай хорнова замыкания, так как для КС-грамматик включения $R_a \supseteq R_\beta$ задают хорново условие на шкалы, и мы ищем минимальное отношение, содержащее R_a и удовлетворяющее этому хорнову условию (или семейству хорновых условий, для всех правил из нашей грамматики).

Определение

 Π -замыкание шкалы: $F^{\Pi}=(W,(R_a^{\Pi})_{a\in\Sigma})$, где $R_a^{\Pi}:=\bigcup_{\alpha\in\Pi(a)}R_{\alpha}.$

Определение

 Π -замыкание шкалы: $F^\Pi=(W,(R^\Pi_a)_{a\in\Sigma})$, где $R^\Pi_a:=\bigcup_{lpha\in\Pi(a)}R_lpha.$

Лемма (1)

 Π -замыкание любой шкалы является Π -шкалой: $F^{\Pi} \models \Pi$.

Определение

П-замыкание шкалы: $F^{\Pi}=(W,(R_a^{\Pi})_{a\in\Sigma})$, где $R_a^{\Pi}:=\bigcup_{\alpha\in\Pi(a)}R_{\alpha}$.

Лемма (1)

 Π -замыкание любой шкалы является Π -шкалой: $F^{\Pi} \models \Pi$.

Доказательство.

Для каждого правила $a \to \beta$ из Π нам надо проверить: $R_a^{\Pi} \supseteq (R^{\Pi})_{\beta}$.

Определение

П-замыкание шкалы: $F^\Pi=(W,(R^\Pi_a)_{a\in\Sigma})$, где $R^\Pi_a:=\bigcup_{lpha\in\Pi(a)}R_lpha.$

Лемма (1)

 Π -замыкание любой шкалы является Π -шкалой: $F^{\Pi} \models \Pi$.

Доказательство.

Для каждого правила $a \to \beta$ из Π нам надо проверить: $R_a^\Pi \supseteq (R^\Pi)_\beta$. Пусть слово $\beta = c_1 \dots c_n$.

Определение

П-замыкание шкалы: $F^\Pi=(W,(R^\Pi_a)_{a\in\Sigma})$, где $R^\Pi_a:=\bigcup_{lpha\in\Pi(a)}R_lpha.$

Лемма (1)

 Π -замыкание любой шкалы является Π -шкалой: $F^{\Pi} \models \Pi$.

Доказательство.

Для каждого правила $a \to \beta$ из Π нам надо проверить: $R_a^\Pi \supseteq (R^\Pi)_\beta$.

Пусть слово $\beta = c_1 \dots c_n$.

Берем любые точки x, y, т.ч. $x(R^{\Pi})_{\beta} y$, т.е. $x(R^{\Pi}_{c_1} \circ \ldots \circ R^{\Pi}_{c_1}) y$.

Определение

П-замыкание шкалы: $F^\Pi=(W,(R^\Pi_a)_{a\in\Sigma})$, где $R^\Pi_a:=\bigcup_{lpha\in\Pi(a)}R_lpha.$

Лемма (1)

 Π -замыкание любой шкалы является Π -шкалой: $F^{\Pi} \models \Pi$.

Доказательство.

Для каждого правила $a \to \beta$ из Π нам надо проверить: $R_a^\Pi \supseteq (R^\Pi)_\beta$.

Пусть слово $\beta = c_1 \dots c_n$.

Берем любые точки x, y, т.ч. $x(R^{\Pi})_{\beta} y,$ т.е. $x(R^{\Pi}_{c_1} \circ \ldots \circ R^{\Pi}_{c_1}) y.$

Для некоторых слов $\alpha_i \in \Pi(c_i)$ имеем: $x(R_{\alpha_1} \circ \ldots \circ R_{\alpha_n}) y$.

Определение

П-замыкание шкалы: $F^\Pi=(W,(R^\Pi_a)_{a\in\Sigma})$, где $R^\Pi_a:=\bigcup_{\alpha\in\Pi(a)}R_\alpha.$

Лемма (1)

 Π -замыкание любой шкалы является Π -шкалой: $F^{\Pi} \models \Pi$.

Доказательство.

Для каждого правила $a \to \beta$ из Π нам надо проверить: $R_a^\Pi \supseteq (R^\Pi)_\beta$. Пусть слово $\beta = c_1 \dots c_n$.

Берем любые точки x, y, т.ч. $x(R^{\Pi})_{\beta} y,$ т.е. $x(R^{\Pi}_{c_1} \circ \ldots \circ R^{\Pi}_{c_1}) y.$

Для некоторых слов $\alpha_i \in \Pi(c_i)$ имеем: $x(R_{\alpha_1} \circ ... \circ R_{\alpha_n}) y$. То есть $x(R_{\alpha_1 \dots \alpha_n}) y$.

Определение

П-замыкание шкалы: $F^{\Pi}=(W,(R_a^{\Pi})_{a\in\Sigma})$, где $R_a^{\Pi}:=\bigcup_{\alpha\in\Pi(a)}R_{\alpha}$.

Лемма (1)

 Π -замыкание любой шкалы является Π -шкалой: $F^{\Pi} \models \Pi$.

Доказательство.

Для каждого правила $a \to \beta$ из Π нам надо проверить: $R_a^{\Pi} \supseteq (R^{\Pi})_{\beta}$. Пусть слово $\beta = c_1 \dots c_n$.

Берем любые точки x, y, т.ч. $x(R^{\Pi})_{\beta} y$, т.е. $x(R^{\Pi}_{G} \circ \ldots \circ R^{\Pi}_{G}) y$.

Для некоторых слов $\alpha_i \in \Pi(c_i)$ имеем: $x(R_{\alpha_1} \circ \ldots \circ R_{\alpha_n}) y$. То есть $x(R_{\alpha_1 \ldots \alpha_n}) y$. Но $a \stackrel{\Pi}{\longmapsto} c_1 \ldots c_n$ и $c_i \stackrel{\Pi}{\longmapsto} \alpha_i$.

Определение

П-замыкание шкалы: $F^{\Pi}=(W,(R_a^{\Pi})_{a\in\Sigma})$, где $R_a^{\Pi}:=\bigcup_{\alpha\in\Pi(a)}R_{\alpha}$.

Лемма (1)

 Π -замыкание любой шкалы является Π -шкалой: $F^{\Pi} \models \Pi$.

Доказательство.

Для каждого правила $a \to \beta$ из Π нам надо проверить: $R_a^{\Pi} \supseteq (R^{\Pi})_{\beta}$.

Пусть слово $\beta = c_1 \dots c_n$.

Берем любые точки x, y, т.ч. $x(R^{\Pi})_{\beta} y$, т.е. $x(R^{\Pi}_{G} \circ \ldots \circ R^{\Pi}_{G}) y$.

Для некоторых слов $\alpha_i \in \Pi(c_i)$ имеем: $x(R_{\alpha_1} \circ \ldots \circ R_{\alpha_n}) y$. To есть $x(R_{\alpha_1...\alpha_n})$ y. Ho $a \stackrel{\Pi}{\longmapsto} c_1...c_n$ и $c_i \stackrel{\Pi}{\longmapsto} \alpha_i$.

Поэтому $a \stackrel{\square}{\Longrightarrow} \alpha_1 \dots \alpha_n$.

To есть $x R_{\mu} y$ для слова $u = \alpha_1 \dots \alpha_n \in \Pi(a)$.

Определение

П-замыкание шкалы: $F^\Pi=(W,(R^\Pi_a)_{a\in\Sigma})$, где $R^\Pi_a:=\bigcup_{lpha\in\Pi(a)}R_lpha.$

Лемма (1)

 Π -замыкание любой шкалы является Π -шкалой: $F^{\Pi} \models \Pi$.

Доказательство.

Для каждого правила $a \to \beta$ из Π нам надо проверить: $R_a^\Pi \supseteq (R^\Pi)_\beta$.

Пусть слово $\beta = c_1 \dots c_n$.

Берем любые точки x, y, т.ч. $x(R^{\Pi})_{\beta} y,$ т.е. $x(R^{\Pi}_{c_1} \circ \ldots \circ R^{\Pi}_{c_1}) y.$

Для некоторых слов $\alpha_i \in \Pi(c_i)$ имеем: $x(R_{\alpha_1} \circ \ldots \circ R_{\alpha_n}) y$. То есть $x(R_{\alpha_1 \ldots \alpha_n}) y$. Но $a \stackrel{\Pi}{\longmapsto} c_1 \ldots c_n$ и $c_i \stackrel{\Pi}{\longmapsto} \alpha_i$.

Поэтому $a \models \alpha_1 \dots \alpha_n$.

То есть $x R_u y$ для слова $u = \alpha_1 \dots \alpha_n \in \Pi(a)$. Тем самым $x(R_a^{\Pi}) y$.

Определение

 Π -замыкание шкалы: $F^{\Pi}=(W,(R_a^{\Pi})_{a\in\Sigma})$, где $R_a^{\Pi}:=\bigcup_{\alpha\in\Pi(a)}R_{\alpha}.$

Определение

П-замыкание шкалы: $F^\Pi=(W,(R^\Pi_a)_{a\in\Sigma})$, где $R^\Pi_a:=\bigcup_{lpha\in\Pi(a)}R_lpha.$

Лемма (2)

 Π -замыкание шкалы F — это наименьшая Π -шкала, содержащая F.

Определение

П-замыкание шкалы: $F^\Pi=(W,(R^\Pi_a)_{a\in\Sigma})$, где $R^\Pi_a:=\bigcup_{\alpha\in\Pi(a)}R_\alpha.$

Лемма (2)

 Π -замыкание шкалы F — это наименьшая Π -шкала, содержащая F.

Доказательство.

Пусть $G = (W, (S_a)_{a \in \Sigma})$ — произвольная П-шкала (с тем же W), содержащая шкалу F, то есть $S_a \supseteq R_a$ для всех букв $a \in \Sigma$.

Определение

П-замыкание шкалы: $F^\Pi=(W,(R^\Pi_a)_{a\in\Sigma})$, где $R^\Pi_a:=\bigcup_{\alpha\in\Pi(a)}R_\alpha.$

Лемма (2)

 Π -замыкание шкалы F — это наименьшая Π -шкала, содержащая F.

Доказательство.

Пусть $G=(W,(S_a)_{a\in\Sigma})$ — произвольная П-шкала (с тем же W), содержащая шкалу F, то есть $S_a\supseteq R_a$ для всех букв $a\in\Sigma$.

Для всякого слова $\alpha \in \Pi(a)$ имеем $G \models a \rightarrow \alpha$,

Определение

П-замыкание шкалы: $F^\Pi=(W,(R^\Pi_a)_{a\in\Sigma})$, где $R^\Pi_a:=\bigcup_{\alpha\in\Pi(a)}R_\alpha.$

Лемма (2)

 Π -замыкание шкалы F — это наименьшая Π -шкала, содержащая F.

Доказательство.

Пусть $G = (W, (S_a)_{a \in \Sigma})$ — произвольная П-шкала (с тем же W), содержащая шкалу F, то есть $S_a \supseteq R_a$ для всех букв $a \in \Sigma$.

Для всякого слова $\alpha\in\Pi(a)$ имеем $G\models a o lpha$, значит, $S_a\supseteq S_lpha\supseteq R_lpha.$

Определение

П-замыкание шкалы: $F^\Pi=(W,(R^\Pi_a)_{a\in\Sigma})$, где $R^\Pi_a:=\bigcup_{\alpha\in\Pi(a)}R_\alpha.$

Лемма (2)

 Π -замыкание шкалы F — это наименьшая Π -шкала, содержащая F.

Доказательство.

Пусть $G=(W,(S_a)_{a\in\Sigma})$ — произвольная П-шкала (с тем же W), содержащая шкалу F, то есть $S_a\supseteq R_a$ для всех букв $a\in\Sigma$.

Для всякого слова $\alpha\in\Pi(a)$ имеем $G\models a olpha$, значит, $S_a\supseteq S_\alpha\supseteq R_lpha.$

Получили $S_a\supseteq R_a^{\Pi}$.

Определение

П-замыкание шкалы: $F^{\Pi}=(W,(R_a^{\Pi})_{a\in\Sigma})$, где $R_a^{\Pi}:=\bigcup_{\alpha\in\Pi(a)}R_{\alpha}$.

Лемма (2)

 Π -замыкание шкалы F — это наименьшая Π -шкала, содержащая F.

Доказательство.

Пусть $G = (W, (S_a)_{a \in \Sigma})$ — произвольная П-шкала (с тем же W), содержащая шкалу F, то есть $S_a \supset R_a$ для всех букв $a \in \Sigma$.

Для всякого слова $\alpha \in \Pi(a)$ имеем $G \models a \to \alpha$, значит, $S_a \supseteq S_\alpha \supseteq R_\alpha$.

Получили $S_a \supset R_a^{\Pi}$. Тем самым G содержит F^{Π} (как подшкалу).

Определение

 Π -замыкание шкалы: $F^\Pi=(W,(R^\Pi_a)_{a\in\Sigma})$, где $R^\Pi_a:=\bigcup_{lpha\in\Pi(a)}R_lpha.$

Определение

П-замыкание шкалы: $F^\Pi=(W,(R^\Pi_a)_{a\in\Sigma})$, где $R^\Pi_a:=\bigcup_{\alpha\in\Pi(a)}R_\alpha.$

Лемма (3)

Если F — уже Π -шкала, то $F^{\Pi} = F$.

Определение

П-замыкание шкалы: $F^\Pi=(W,(R^\Pi_a)_{a\in\Sigma})$, где $R^\Pi_a:=\bigcup_{\alpha\in\Pi(a)}R_\alpha.$

Лемма (3)

Если F — уже Π -шкала, то $F^{\Pi} = F$.

Доказательство.

Докажем: $R_a = R_a^{\Pi}$.

Определение

П-замыкание шкалы: $F^\Pi=(W,(R^\Pi_a)_{a\in\Sigma})$, где $R^\Pi_a:=\bigcup_{lpha\in\Pi(a)}R_lpha.$

Лемма (3)

Если F — уже Π -шкала, то $F^{\Pi} = F$.

Доказательство.

Докажем: $R_a = R_a^{\Pi}$. Включение (\subseteq) тривиально. Осталось (\supseteq)

Определение

П-замыкание шкалы: $F^\Pi=(W,(R^\Pi_a)_{a\in\Sigma})$, где $R^\Pi_a:=\bigcup_{\alpha\in\Pi(a)}R_\alpha.$

Лемма (3)

Если F — уже Π -шкала, то $F^{\Pi} = F$.

Доказательство.

Докажем: $R_a=R_a^\Pi$. Включение (\subseteq) тривиально. Осталось (\supseteq) Почему для любого слова $\alpha\in\Pi(a)$ имеем $R_a\supseteq R_\alpha$?

Определение

П-замыкание шкалы: $F^\Pi=(W,(R^\Pi_a)_{a\in\Sigma})$, где $R^\Pi_a:=\bigcup_{\alpha\in\Pi(a)}R_\alpha.$

Лемма (3)

Если F — уже Π -шкала, то $F^{\Pi} = F$.

Доказательство.

Докажем: $R_a = R_a^{\Pi}$. Включение (\subseteq) тривиально. Осталось (\supseteq)

Почему для любого слова $\alpha\in\Pi(a)$ имеем $R_a\supseteq R_{\alpha}$?

Потому что $F \models \Pi$, в частности, $F \models a \rightarrow \alpha$, поскольку $a \stackrel{\Pi}{\Longrightarrow} \alpha$.

Определение

П-замыкание шкалы: $F^\Pi=(W,(R^\Pi_a)_{a\in\Sigma})$, где $R^\Pi_a:=\bigcup_{\alpha\in\Pi(a)}R_\alpha.$

Лемма (3)

Если F — уже Π -шкала, то $F^{\Pi} = F$.

Доказательство.

Докажем: $R_a = R_a^\Pi$. Включение (\subseteq) тривиально. Осталось (\supseteq) Почему для любого слова $\alpha \in \Pi(a)$ имеем $R_a \supseteq R_\alpha$? Потому что $F \models \Pi$, в частности, $F \models a \to \alpha$, поскольку $a \stackrel{\sqcap}{\longmapsto} \alpha$.

Вывод: чтобы получить класс всех Π -шкал, нужно взять класс всех шкал и Π -замкнуть все шкалы.

Модальная логика. Лекция 11

Определение

П-замыкание шкалы: $F^\Pi=(W,(R^\Pi_a)_{a\in\Sigma})$, где $R^\Pi_a:=\bigcup_{\alpha\in\Pi(a)}R_\alpha.$

Лемма (3)

Если F — уже Π -шкала, то $F^{\Pi} = F$.

Доказательство.

Докажем: $R_a = R_a^{\Pi}$. Включение (\subseteq) тривиально. Осталось (\supseteq)

Почему для любого слова $\alpha \in \Pi(a)$ имеем $R_a \supseteq R_\alpha$?

Потому что $F \models \Pi$, в частности, $F \models a \rightarrow \alpha$, поскольку $a \stackrel{\Pi}{\Longrightarrow} \alpha$.

Вывод: чтобы получить класс всех П-шкал, нужно взять класс всех шкал и П-замкнуть все шкалы.

Но если языки $\Pi(a)$ регулярны, то они задаются некоторыми регулярными выражениями! То есть $\Pi(a) = \mathbb{L}(e)$.

Если $e(a_1, \ldots, a_n)$ — рег. выражение над алфавитом $\Sigma = \{a_1, \ldots, a_n\}$, то вместо букв a_i можно подставить отношения R_{a_i} из шкалы F.

Если $e(a_1,\ldots,a_n)$ — рег. выражение над алфавитом $\Sigma=\{a_1,\ldots,a_n\}$, то вместо букв a_i можно подставить отношения R_{a_i} из шкалы F. Получится некоторое отношение.

Если $\mathrm{e}(a_1,\ldots,a_n)$ — рег. выражение над алфавитом $\Sigma=\{a_1,\ldots,a_n\}$, то вместо букв a_i можно подставить отношения R_{a_i} из шкалы F. Получится некоторое отношение.

Лемма

$$e(R_{a_1},\ldots,R_{a_n}) = \bigcup_{\alpha \in \mathbb{L}(e)} R_{\alpha}.$$

Если $\mathrm{e}(a_1,\ldots,a_n)$ — рег. выражение над алфавитом $\Sigma=\{a_1,\ldots,a_n\}$, то вместо букв a_i можно подставить отношения R_{a_i} из шкалы F. Получится некоторое отношение.

Лемма

$$\mathrm{e}(R_{a_1},\ldots,R_{a_n}) \ = \ \bigcup_{\alpha\in\mathbb{L}(\mathrm{e})}R_{\alpha}.$$

Доказательство.

Простая индукция по построению выражения е.

Если $\mathrm{e}(a_1,\ldots,a_n)$ — рег. выражение над алфавитом $\Sigma=\{a_1,\ldots,a_n\}$, то вместо букв a_i можно подставить отношения R_{a_i} из шкалы F. Получится некоторое отношение.

Лемма

$$\mathrm{e}(R_{a_1},\ldots,R_{a_n}) \ = \ \bigcup_{lpha \in \mathbb{L}(\mathrm{e})} R_{lpha}.$$

Доказательство.

Простая индукция по построению выражения е.

Значит, если для каждой буквы $a_i \in \Sigma$ язык $\Pi(a_i)$ — регулярный, т.е. задается некоторым регулярным выражением: $\Pi(a_i) = \mathbb{L}(e_i)$, то класс всех Π -шкал можно получить из класса всех шкал так:

- добавлять в шкалы нужные объединения, композиции и $pe\phi n$.-транз. замыкания отношений, согласно выражениям e_i ,
- удалить из шкал «промежуточные» отношения.

Теорема (Шапировский, Золин, 2014)

Пусть \mathbb{F} — класс шкал (с несколькими отношениями), L — его логика. Пусть L — допускает фильтрацию.

Теорема (Шапировский, Золин, 2014)

Пусть \mathbb{F} — класс шкал (с несколькими отношениями), L — его логика. Пусть L — допускает фильтрацию.

Тогда если

- ullet ко всем шкалам добавить отношение $R_a \cup R_b$ или
- ullet ко всем шкалам добавить отношение $R_a\circ R_b$ или
- ко всем шкалам добавить отношение $(R_a)^+$ или
- ullet во всех шкалах удалить отношение с индексом $a\in \Sigma$,

то логика получившегося класса шкал — тоже допускает фильтрацию.

Теорема (Шапировский, Золин, 2014)

Пусть \mathbb{F} — класс шкал (с несколькими отношениями), L — его логика. Пусть L — допускает фильтрацию.

Тогда если

- ullet ко всем шкалам добавить отношение $R_a \cup R_b$ или
- ullet ко всем шкалам добавить отношение $R_a\circ R_b$ или
- ullet ко всем шкалам добавить отношение $(R_a)^+$ или
- ullet во всех шкалах удалить отношение с индексом $a\in \Sigma$,

то логика получившегося класса шкал — тоже допускает фильтрацию.

Поскольку логика K_{Σ} класса всех шкал допускает фильтрацию, то

Теорема (Шапировский, Золин, 2014)

Пусть \mathbb{F} — класс шкал (с несколькими отношениями), L — его логика. Пусть L — допускает фильтрацию.

Тогда если

- ullet ко всем шкалам добавить отношение $R_a \cup R_b$ или
- ullet ко всем шкалам добавить отношение $R_a\circ R_b$ или
- ullet ко всем шкалам добавить отношение $(R_a)^+$ или
- ullet во всех шкалах удалить отношение с индексом $a\in \Sigma$,

то логика получившегося класса шкал — тоже допускает фильтрацию.

Поскольку логика K_{Σ} класса всех шкал допускает фильтрацию, то

Следствие

Всякая регулярная модальная логика— допускает фильтрацию. А значит, полна относительно конечных шкал и разрешима.

① Логика $\mathsf{K}\Pi = \mathsf{K}_2 \oplus (\Box_s p \to \Box_r \Box_s p)$ с регулярной грамматикой $\Pi = \{s \to rs\}$ является $\mathsf{PSPACE} ext{-}\mathsf{полной}.$

- **1** Логика $\mathsf{K}\Pi = \mathsf{K}_2 \oplus (\Box_s p \to \Box_r \Box_s p)$ с регулярной грамматикой $\Pi = \{s \rightarrow rs\}$ является PSPACE-полной.
- ② Логика $\mathsf{K}\Pi = \mathsf{K}_2 \oplus (\Box_s p \to \Box_s \Box_r p)$ с регулярной грамматикой $\Pi = \{s \to sr\}$ является ExpTime-полной.

- ① Логика $\mathsf{K}\Pi = \mathsf{K}_2 \oplus (\Box_s p \to \Box_r \Box_s p)$ с регулярной грамматикой $\Pi = \{s \to rs\}$ является PSPACE -полной.
- ② Логика $\mathsf{K}\Pi = \mathsf{K}_2 \oplus (\Box_s p \to \Box_s \Box_r p)$ с регулярной грамматикой $\Pi = \{s \to sr\}$ является $\mathrm{ExpTIME}$ -полной.
- 3 S. Demri классифицировал все рег. логики PSPACE / EXPTIME.

- ① Логика $\mathsf{K}\Pi = \mathsf{K}_2 \oplus (\Box_s p \to \Box_r \Box_s p)$ с регулярной грамматикой $\Pi = \{s \to rs\}$ является PSPACE -полной.
- ② Логика $\mathsf{K}\Pi = \mathsf{K}_2 \oplus (\Box_s p \to \Box_s \Box_r p)$ с регулярной грамматикой $\Pi = \{s \to sr\}$ является $\mathrm{ExpTIME}$ -полной.
- S. Demri классифицировал все рег. логики PSPACE / EXPTIME.
- **4** Все результаты обобщаются на модальные логики с обратными модальностями; их грамматики содержат символы \overline{a} , где $a \in \Sigma$.

- ① Логика $\mathsf{K}\Pi = \mathsf{K}_2 \oplus (\Box_s p \to \Box_r \Box_s p)$ с регулярной грамматикой $\Pi = \{s \to rs\}$ является PSPACE -полной.
- ② Логика $\mathsf{K}\Pi = \mathsf{K}_2 \oplus (\Box_s p \to \Box_s \Box_r p)$ с регулярной грамматикой $\Pi = \{s \to sr\}$ является $\mathrm{ExpTime}$ -полной.
- S. Demri классифицировал все рег. логики PSPACE / EXPTIME.
- **3** Все результаты обобщаются на модальные логики с обратными модальностями; их грамматики содержат символы \overline{a} , где $a \in \Sigma$. Логики KB ($\square_a p \to \square_{\overline{a}} p$), K5 ($\square_a p \to \square_{\overline{a}} \square_a p$), KD45, S5 и другие покрываются этим обобщением.

- ① Логика $\mathsf{K}\Pi = \mathsf{K}_2 \oplus (\Box_s p \to \Box_r \Box_s p)$ с регулярной грамматикой $\Pi = \{s \to rs\}$ является PSPACE -полной.
- ② Логика $\mathsf{K}\Pi = \mathsf{K}_2 \oplus (\Box_s p \to \Box_s \Box_r p)$ с регулярной грамматикой $\Pi = \{s \to sr\}$ является $\mathrm{ExpTIME}$ -полной.
- 3 S. Demri классифицировал все рег. логики PSPACE / EXPTIME.
- Все результаты обобщаются на модальные логики с обратными модальностями; их грамматики содержат символы \overline{a} , где $a \in \Sigma$. Логики KB ($\square_a p \to \square_{\overline{a}} p$), K5 ($\square_a p \to \square_{\overline{a}} \square_a p$), KD45, S5 и другие покрываются этим обобщением.
- Открытый вопрос для любой КС-грамматики П эквив. условия:
 - грамматика П регулярна,
 - логика KП разрешима,
 - логика КП обладает FMP (ПОКШ),
 - логика КП допускает фильтрацию.

- ① Логика $\mathsf{K}\Pi = \mathsf{K}_2 \oplus (\Box_s p \to \Box_r \Box_s p)$ с регулярной грамматикой $\Pi = \{s \to rs\}$ является PSPACE -полной.
- ② Логика $\mathsf{K}\Pi = \mathsf{K}_2 \oplus (\Box_s p \to \Box_s \Box_r p)$ с регулярной грамматикой $\Pi = \{s \to sr\}$ является $\mathrm{ExpTIME}$ -полной.
- S. Demri классифицировал все рег. логики PSPACE / EXPTIME.
- Все результаты обобщаются на модальные логики с обратными модальностями; их грамматики содержат символы \overline{a} , где $a \in \Sigma$. Логики KB ($\square_a p \to \square_{\overline{a}} p$), K5 ($\square_a p \to \square_{\overline{a}} \square_a p$), KD45, S5 и другие покрываются этим обобщением.
- Открытый вопрос для любой КС-грамматики П эквив. условия:
 - грамматика П регулярна,
 - логика KП разрешима,
 - логика КП обладает FMP (ПОКШ),
 - логика КП допускает фильтрацию.

Конец лекции 11. Спасибо за внимание!