Axiomatizability criteria in modal logic

Evgeny Zolin (Евгений Золин)

старший научный сотрудник Кафедра математической логики и теории алгоритмов Механико математический факультет МГУ им. М.В.Ломоносова

Десятые Смирновские чтения по логике Философский факультет МГУ 15–17 июня 2017 года

(b) A (B) (b) A (B) (b)

Abstract model theory

Consider:

⊨

- \mathcal{L} - a language (any set; its elements are called formulas)
- S – a class of structures or models
 - a truth relation: $M \models A$ between $M \in S$ and $A \in \mathcal{L}$

3 × 4 3 ×

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Abstract model theory

Consider:

- \mathcal{L} a language (any set; its elements are called formulas)
- \mathcal{S} a class of structures or models
- $\models \qquad \text{ a truth relation: } M \models A \text{ between } M \in \mathcal{S} \text{ and } A \in \mathcal{L}$

How can we "characterize"

- classes of models from \mathcal{S} definable by a single formula from \mathcal{L} ?
- classes of models from $\mathcal S$ definable by a set of formulas from $\mathcal L$?

Consider:

⊨

- \mathcal{L} a language (any set; its elements are called formulas)
- \mathcal{S} a class of structures or models
 - a truth relation: $M \models A$ between $M \in S$ and $A \in \mathcal{L}$

How can we "characterize"

- classes of models from $\mathcal S$ definable by a single formula from $\mathcal L$?
- classes of models from ${\cal S}$ definable by a set of formulas from ${\cal L}$?

For a set of formulas $\Gamma\subseteq \mathcal{L}$ and a class of models $\mathbb{K}\subseteq \mathcal{S},$ we denote:

$$\begin{array}{rcl} \mathsf{Models}(\Gamma) & := & \{ \ M \in \mathcal{S} \ | \ M \models \Gamma \, \} \\ \mathsf{Theory}(\mathbb{K}) & := & \{ \ A \in \mathcal{L} \ | \ \mathbb{K} \models A \, \} \end{array}$$

(日) (周) (日) (日)

$\begin{array}{ll} \mbox{Definition. For a class of models } \mathbb{K} \subseteq \mathcal{S} \mbox{ we write:} \\ \mathbb{K} \in \mathbb{L} & \mbox{if } \mathbb{K} = \mbox{Models}(A), \mbox{ for some formula } A \in \mathcal{L}. \end{array}$

- 20

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Definition. For a class of models $\mathbb{K} \subseteq S$ we write: $\mathbb{K} \in \mathbb{L}$ if $\mathbb{K} = Models(A)$, for some formula $A \in \mathcal{L}$. $\mathbb{K} \in \mathbb{ML}$ if $\mathbb{K} = Models(\Gamma)$, for some set of formulas $\Gamma \subseteq \mathcal{L}$. Equivalently: if $\mathbb{K} = \bigcap_{i \in I} \mathbb{K}_i$ for some classes $\mathbb{K}_i \in \mathbb{L}$.

< □ > < □ > < □ > < □ > < □ > < □ >

Definition. For	гас	class of models $\mathbb{K}\subseteq\mathcal{S}$ we write:
$\mathbb{K} \in \mathbb{L}$ $\mathbb{K} \in \mathbb{nL}$		$\mathbb{K} = Models(A), \text{ for some formula } A \in \mathcal{L}.$ $\mathbb{K} = Models(\Gamma), \text{ for some set of formulas } \Gamma \subseteq \mathcal{L}.$
Equivalently:	if	$\mathbb{K} = \bigcap_{i \in I} \mathbb{K}_i$ for some classes $\mathbb{K}_i \in \mathbb{L}$.
$\mathbb{K}\in \mathbb{U}\mathbb{L}$	if	$\mathbb{K} = \bigcup_{i \in I}^{I \in I} \mathbb{K}_i \text{ for some classes } \mathbb{K}_i \in \mathbb{L}.$

イロト イポト イヨト イヨト

Definition. For	rac	class of models $\mathbb{K}\subseteq\mathcal{S}$ we write:
$\mathbb{K} \in \mathbb{L}$ $\mathbb{K} \in \mathbb{nL}$		$\begin{split} \mathbb{K} &= Models(A), \ \text{ for some formula } A \in \mathcal{L}. \\ \mathbb{K} &= Models(\Gamma), \ \text{ for some set of formulas } \Gamma \subseteq \mathcal{L}. \end{split}$
Equivalently:	if	$\mathbb{K} = \bigcap_{i \in I} \mathbb{K}_i$ for some classes $\mathbb{K}_i \in \mathbb{L}$.
$\mathbb{K}\in \mathbb{UL}$	if	$\mathbb{K} = \bigcup_{i \in I} \mathbb{K}_i$ for some classes $\mathbb{K}_i \in \mathbb{L}$.
$\mathbb{K}\in \mathbb{V}\mathbb{n}\mathbb{L}$	if	$\mathbb{K} = \bigcup_{i \in I}^{I \in I} \bigcap_{j \in J_i} \mathbb{K}_{i,j} \text{ for some classes } \mathbb{K}_{i,j} \in \mathbb{L}.$

3

イロト イポト イヨト イヨト

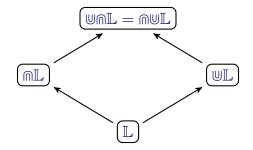
Definition. For	ас	lass of models $\mathbb{K}\subseteq\mathcal{S}$ we write:
$\mathbb{K} \in \mathbb{L}$ $\mathbb{K} \in \mathbb{R}$		$\mathbb{K} = Models(A), \text{ for some formula } A \in \mathcal{L}.$ $\mathbb{K} = Models(\Gamma), \text{ for some set of formulas } \Gamma \subseteq \mathcal{L}.$
Equivalently:	if	$\mathbb{K} = \bigcap_{i \in I} \mathbb{K}_i$ for some classes $\mathbb{K}_i \in \mathbb{L}$.
$\mathbb{K}\in \mathbb{UL}$	if	$\mathbb{K} = \bigcup_{i \in I}^{j \in I} \mathbb{K}_i \text{ for some classes } \mathbb{K}_i \in \mathbb{L}.$
$\mathbb{K}\in \mathbb{V}\mathbb{n}\mathbb{L}$	if	$\mathbb{K} = \bigcup_{i \in I}^{I \in I} \bigcap_{j \in J_i} \mathbb{K}_{i,j} \text{ for some classes } \mathbb{K}_{i,j} \in \mathbb{L}.$

For the "elementary" (i.e. first-order) language \mathcal{L} , the terminology is:

 $\begin{array}{lll} \mathbb{K} \in \mathbb{L} & - \text{ an } & \text{elementary class of models } (\textit{finitely axiomatizable}) \\ \mathbb{K} \in \mathbb{nL} & - \text{ a } & \Delta \text{-elementary class of models } (\textit{axiomatizable}) \\ \mathbb{K} \in \mathbb{UL} & - \text{ a } & \Sigma \text{-elementary class of models } (\textit{co-axiomatizable?}) \\ \mathbb{K} \in \mathbb{U} \mathbb{nL} & - \text{ a } & \Sigma \Delta \text{-elementary class of models} \end{array}$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The hierarchy of the 4 species of classes

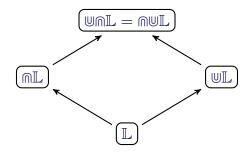


Evgeny Zo

< A

э

The hierarchy of the 4 species of classes



- \bullet Classes in L: the classes of all groups, all rings, all fields
- Classes in $\square L$: infinite groups, infinite rings, infinite fields
- Classes in $\ensuremath{\mathbb{U}}\xspace$: finite groups, finite rings, finite fields
- Classes in UmL: infinite fields of characteristic p > 0; infinite finitely dimensional vector spaces
- Not even in U∩L: well-ordered sets, periodic groups, simple_groups

Evgeny Zolin

Axiomatic classes

Isomorphism of two models

 $M \cong N \qquad \leftrightarrows \qquad \exists$ bijection that preserves all predicates and functions

Isomorphism of two models

 $M \cong N \iff \exists$ bijection that preserves all predicates and functions **Elementary equivalence of two models** $M \equiv_{FO} N \iff$ for every formula $A \in FO$: $M \models A \iff N \models A$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○○へ⊙

Isomorphism of two models

 $M \cong N \quad \Leftrightarrow \quad \exists \text{ bijection that preserves all predicates and functions}$ **Elementary equivalence of two models** $M \equiv_{\text{FO}} N \quad \Leftrightarrow \quad \text{for every formula } A \in \text{FO:} \quad M \models A \iff N \models A$ **Ultraproduct of a family of models:** $M = \prod_{i \in I}^{U} M_i$ **<u>Lós' Theorem:</u>** $M \models A \iff \{i \in I \mid M_i \models A\} \in U$

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへで

Isomorphism of two models

 $M \cong N$ \Rightarrow \exists bijection that preserves all predicates and functions Elementary equivalence of two models $M \equiv_{\mathsf{FO}} N \iff$ for every formula $A \in \mathsf{FO}$: $M \models A \iff N \models A$ **Ultraproduct** of a family of models: $M = \prod_{i \in I}^{U} M_i$ **Łós' Theorem:** $M \models A \iff \{i \in I \mid M_i \models A\} \in U$ Ultrapower of a model N

If every $M_i = N$ then their ultraproduct is called the ultrapower: $M = N^U$

A model and its ultrapower are elementary equivalent: $N \equiv_{FO} N^U$

First-order language | Criteria for the 4 species

Theorem (Keisler, 1961)

	Both	K	$\overline{\mathbb{K}}$
$\mathbb{K}\in\mathbb{V}\mathbb{nL}$	≡FO		
$\mathbb{K} \in \mathbb{UL}$	≡ _{FO}		УΠ
$\mathbb{K}\in \mathbb{ML}$	≡ _{FO}	УΠ	
$\mathbb{K} \in \mathbb{L}$	≡ _{FO}	УΠ	УΠ

Legend: $\forall \Pi = ultraproduct$

▲□▶ ▲圖▶ ▲画▶ ▲画▶ 二直 - のへで

First-order language | Criteria for the 4 species

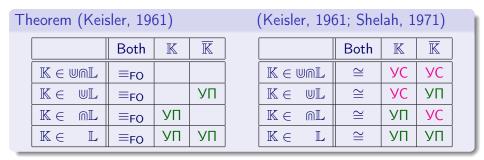
Legend:
$$\forall \Pi = \text{ultraproduct}$$

 $\forall C = \text{ultrapower}$

3

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

First-order language | Criteria for the 4 species



Legend: $\nabla \Pi$ = ultraproduct ∇C = ultrapower

Main reason for the symmetry in the above tables:

$$M \models A \iff M \models \neg A$$

Evgeny Zolin

Axiomatic classes

(人間) トイヨト イヨト

- 31

Modal language | Kripke semantics

Formulas: $p_i \mid \neg A \mid (A \land B) \mid (A \lor B) \mid (A \to B) \mid \Box A$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Modal language | Kripke semantics

Formulas: $p_i \mid \neg A \mid (A \land B) \mid (A \lor B) \mid (A \to B) \mid \Box A$

Kripke semantics:

Kripke model: M = (W, R, V), where $W \neq \varnothing$ — a nonempty set of worlds $R \subseteq W \times W$ — a accessibility relation between worlds $V(p_i) \subseteq W$ — a valuation of variables

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Modal language | Kripke semantics

Formulas: $p_i \mid \neg A \mid (A \land B) \mid (A \lor B) \mid (A \to B) \mid \Box A$

Kripke semantics:

Kripke model: M = (W, R, V), where $W \neq \varnothing$ — a nonempty set of worlds $R \subseteq W \times W$ — a accessibility relation between worlds $V(p_i) \subseteq W$ — a valuation of variables

Truth of a formula is defined in a pointed model (M, x):

Truth of a formula in a model: $M \models A$ if $\forall x \in W$ $M, x \models A$.

Modal equivalence of two (pointed) Kripke models

 $M \equiv_{\mathsf{ML}} N \iff$ for every formula $A \in \mathsf{ML}$: $M \models A \iff N \models A$

▲□▶ ▲圖▶ ▲画▶ ▲画▶ 二直 - のへで

Modal equivalence of two (pointed) Kripke models

 $M \equiv_{\mathsf{ML}} N \iff$ for every formula $A \in \mathsf{ML}$: $M \models A \iff N \models A$

Bisimulation between two pointed Kripke models

 $M, a \simeq N, b$ — respects the valuation of variables every step in M is "simulated" by some step in Nevery step in N is "simulated" by some step in M

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

Modal equivalence of two (pointed) Kripke models

 $M \equiv_{\mathsf{ML}} N \iff$ for every formula $A \in \mathsf{ML}$: $M \models A \iff N \models A$

Bisimulation between two pointed Kripke models

 $M, a \simeq N, b$ — respects the valuation of variables every step in M is "simulated" by some step in Nevery step in N is "simulated" by some step in M

Global bisimulation between Kripke models

 $M :\simeq: N$ — bisimulation that covers the whole models M and N

▲□▶ ▲圖▶ ▲画▶ ▲画▶ 二直 - のへで

Modal equivalence of two (pointed) Kripke models

 $M \equiv_{\mathsf{ML}} N \iff$ for every formula $A \in \mathsf{ML}$: $M \models A \iff N \models A$

Bisimulation between two pointed Kripke models

 $M, a \simeq N, b$ — respects the valuation of variables every step in M is "simulated" by some step in Nevery step in N is "simulated" by some step in M

Global bisimulation between Kripke models

 $M :\simeq: N$ — bisimulation that covers the whole models M and N

Generated submodel: $M \hookrightarrow N$ Disjoint union of models: $M = \bigcup_{i \in I} M_i$ Evgeny ZolinAxiomatic classesJune 16, 20178 / 18

Modal language | Criteria in terms of $\ensuremath{\mathsf{V}\Pi}$ and $\ensuremath{\mathsf{V}C}$

Theorem: for pointed Kripke models (Maarten de Rijke, 1993)

	Both	\mathbb{K}	$\overline{\mathbb{K}}$
$\mathbb{K}\in\mathbb{Unl}$	≡ _{ML}		
$\mathbb{K} \in \mathbb{UL}$	≡ _{ML}		УΠ
$\mathbb{K} \in \mathbb{R}$	≡ _{ML}	УΠ	
$\mathbb{K} \in \mathbb{L}$	≡ _{ML}	УΠ	УΠ

Evgeny 2	Zolin	i
----------	-------	---

3

Image: Image:

Modal language | Criteria in terms of $\nabla\Pi$ and ∇ C

Theorem: for pointed Kripke models (Maarten de Rijke, 1993)

	Both	\mathbb{K}	$\overline{\mathbb{K}}$
$\mathbb{K}\in\mathbb{V}\mathbb{nL}$	≡ _{ML}		
$\mathbb{K} \in \mathbb{UL}$	≡ _{ML}		УΠ
$\mathbb{K}\in \mathbb{AL}$	≡ _{ML}	УΠ	
$\mathbb{K} \in \mathbb{L}$	≡ _{ML}	УΠ	УΠ

	Both	\mathbb{K}	$\overline{\mathbb{K}}$
$\mathbb{K}\in\mathbb{Unl}$	\simeq	УС	УС
$\mathbb{K} \in \mathbb{UL}$	\simeq	УС	УΠ
$\mathbb{K}\in \ \mathbb{nL}$	\simeq	УΠ	УС
$\mathbb{K} \in \mathbb{L}$	\simeq	УΠ	УΠ

A B A A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Modal language | Criteria in terms of $\ensuremath{\mathsf{Y}\Pi}$ and $\ensuremath{\mathsf{Y}C}$

Theorem: for pointed Kripke models (Maarten de Rijke, 1993)

	Both	\mathbb{K}	$\overline{\mathbb{K}}$
$\mathbb{K}\in\mathbb{U}\mathbb{n}\mathbb{L}$	≡ _{ML}		
$\mathbb{K} \in \mathbb{U}\mathbb{L}$	≡ _{ML}		УΠ
$\mathbb{K} \in \mathbb{M} \mathbb{L}$	≡ _{ML}	УΠ	
$\mathbb{K} \in \mathbb{L}$	≡ _{ML}	УΠ	УΠ

	Both	K	$\overline{\mathbb{K}}$
$\mathbb{K}\in\mathbb{V}\mathbb{M}\mathbb{L}$	\simeq	УС	УС
$\mathbb{K} \in \mathbb{UL}$	\simeq	УС	УΠ
$\mathbb{K}\in \mathbb{ML}$	\simeq	УΠ	УС
$\mathbb{K} \in \mathbb{L}$	\simeq	УΠ	УΠ

Theorem: for Kripke models (M. de Rijke, H. Sturm, 2001; E.Z. 2017)

	Both	K	$\overline{\mathbb{K}}$	Both	K	$\overline{\mathbb{K}}$
$\mathbb{K}\in\mathbb{Unl}$	≡ _{ML}	\hookrightarrow		:~:	⊖ VC	УС
$\mathbb{K} \in \mathbb{UL}$	≡ _{ML}	\hookrightarrow	УП	:≃:	→ УС	УП
$\mathbb{K}\in \mathbb{AL}$	≡ _{ML}	⇔ ⊎ УП		:≃:	⇔ ⊎ УП	УС
$\mathbb{K} \in \mathbb{L}$	≡ml	⇔ ⊎ УП	УΠ	:≃:	⇔ ⊎ УП	УП

Modal language: "purely modal" operations on models

Ultra-extension of a Kripke model M = (W, R, V)

- is a Kripke model $M^{ue} = (W^{ue}, R^{ue}, V^{ue})$, where

<□> <同> <同> <同> <同> <同> <同> <同> <同> <

Modal language: "purely modal" operations on models

Ultra-extension of a Kripke model M = (W, R, V)

- is a Kripke model $M^{\mathfrak{u}\mathfrak{e}} = (W^{\mathfrak{u}\mathfrak{e}}, R^{\mathfrak{u}\mathfrak{e}}, V^{\mathfrak{u}\mathfrak{e}})$, where

worlds:	W ^{ue}	— all ultrafilters over the set W ;			
relation:	$lpha {\it R}^{{\mathfrak u}{\mathfrak e}} eta$	$ \ \ \ \ \ \ \ \ \ \ \ \ \ $			
		$\Leftrightarrow \forall X \subseteq W \ (\Box X \in \alpha \ \Rightarrow \ X \in \beta)$			
valuation:	$\alpha \models p_i$	$\Rightarrow V(p_i) \in \alpha$			

A model and its ultra-extension are modally equivalent: $M \equiv_{ML} M^{ue}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Modal language: "purely modal" operations on models

Ultra-extension of a Kripke model M = (W, R, V)

- is a Kripke model $M^{\mathfrak{ue}} = (W^{\mathfrak{ue}}, R^{\mathfrak{ue}}, V^{\mathfrak{ue}})$, where

worlds: W^{ue} - all ultrafilters over the set W;relation: $\alpha R^{ue} \beta \iff \forall X \subseteq W \ (\Diamond X \in \alpha \iff X \in \beta)$ $\Leftrightarrow \forall X \subseteq W \ (\Box X \in \alpha \implies X \in \beta)$ valuation: $\alpha \models p_i \iff V(p_i) \in \alpha$

A model and its ultra-extension are modally equivalent: $M \equiv_{ML} M^{ue}$

Ultra-union of a family of pointed Kripke models $(M_i, a_i)_{i \in I}$ $M = \left((\bigoplus_{i \in I} M_i)^{ue}, \alpha \right), \text{ all co-finite subsets of } \{ \langle a_i, i \rangle \mid i \in I \} \text{ are in } \alpha.$

Observation. Ultra-union behaves like the ultra-product.

Evgeny Zolin

Axiomatic classes

Modal language: "purely modal" criteria

Theorem: for pointed Kripke models (Yde Venema, 1999; E.Z. 2017)

	Both	K	$\overline{\mathbb{K}}$
$\mathbb{K}\in\mathbb{Unl}$	≡ _{ML}		
$\mathbb{K} \in \mathbb{UL}$	≡ _{ML}		$ \boxplus^{\mathfrak{ue}} $
$\mathbb{K} \in \mathbb{R}$	≡ _{ML}	$\mathbb{H}^{\mathfrak{ue}}$	
$\mathbb{K} \in \mathbb{L}$	≡ _{ML}	$\mathbb{H}^{\mathfrak{ue}}$	$\mathbb{H}^{\mathfrak{ue}}$

Ev	gei	nv	Ζo	lin

э

Modal language: "purely modal" criteria

Theorem: for pointed Kripke models (Yde Venema, 1999; E.Z. 2017)

	Both	K	$\overline{\mathbb{K}}$
$\mathbb{K}\in\mathbb{U}\mathbb{n}\mathbb{L}$	≡ _{ML}		
$\mathbb{K} \in \mathbb{UL}$	≡ _{ML}		$ \boxplus^{\mathfrak{ue}} $
$\mathbb{K} \in \mathbb{M} \mathbb{L}$	≡ _{ML}	$\mathbb{H}^{\mathfrak{ue}}$	
$\mathbb{K} \in \mathbb{L}$	≡ _{ML}	$\mathbb{H}^{\mathfrak{ue}}$	$\mathbb{H}^{\mathfrak{ue}}$

	Both	\mathbb{K}	$\overline{\mathbb{K}}$
$\mathbb{K}\in\mathbb{Unl}$	\simeq	ue	ue
$\mathbb{K}\in \mathbb{UL}$	\simeq	ue	$ \boxplus^{\mathfrak{ue}} $
$\mathbb{K}\in \ \mathbb{nL}$	\simeq	$\mathbb{H}^{\mathfrak{ue}}$	ue
$\mathbb{K} \in \mathbb{L}$	\simeq	$\mathbb{H}^{\mathfrak{ue}}$	$\mathbb{H}^{\mathfrak{ue}}$

э

Modal language: "purely modal" criteria

Theorem: for pointed Kripke models (Yde Venema, 1999; E.Z. 2017)

	Both	K	$\overline{\mathbb{K}}$
$\mathbb{K}\in\mathbb{U}\mathbb{n}\mathbb{L}$	≡ _{ML}		
$\mathbb{K} \in \mathbb{U}\mathbb{L}$	≡ _{ML}		$\mathbb{H}^{\mathfrak{ue}}$
$\mathbb{K}\in \ \mathbb{M}\mathbb{L}$	≡ _{ML}	$\mathbb{H}^{\mathfrak{ue}}$	
$\mathbb{K} \in \mathbb{L}$	≡ _{ML}	$\mathbb{H}^{\mathfrak{ue}}$	$\mathbb{H}^{\mathfrak{ue}}$

	Both	K	$\overline{\mathbb{K}}$
$\mathbb{K}\in\mathbb{U}\mathbb{n}\mathbb{L}$	\simeq	ue	ue
$\mathbb{K} \in \mathbb{UL}$	\simeq	ue	$\mathbb{H}^{\mathfrak{ue}}$
$\mathbb{K}\in \ \mathbb{n}\mathbb{L}$	\simeq	$\mathbb{H}^{\mathfrak{ue}}$	ue
$\mathbb{K} \in \mathbb{L}$	21	$\mathbb{H}^{\mathfrak{ue}}$	$\mathbb{H}^{\mathfrak{ue}}$

Theorem: for Kripke models (Yde Venema, 1999; E.Z. 2017)

	Both	K	$\overline{\mathbb{K}}$
$\mathbb{K}\in\mathbb{U}\mathbb{n}\mathbb{L}$	≡ _{ML}	\hookrightarrow	
$\mathbb{K} \in \mathbb{UL}$?		
$\mathbb{K}\in \ \mathbb{nL}$	≡ _{ML}	\hookrightarrow $ \exists$ \mathfrak{ue}	
$\mathbb{K} \in \mathbb{L}$?	

Both		\mathbb{K}		$\overline{\mathbb{K}}$	
:≃:	\hookrightarrow		ue	ue	
?					
:≃:	\hookrightarrow	⊎	ue	ue	
?					

Universal modality | "purely modal" criteria

Theorem: for pointed Kripke models (possibly known; E.Z. 2017)

	Both	K	$\overline{\mathbb{K}}$
$\mathbb{K}\in\mathbb{U}\mathbb{n}\mathbb{L}$	$\equiv_{ML\forall}$		
$\mathbb{K} \in \mathbb{UL}$	$\equiv_{ML\forall}$		$ \boxplus^{\mathfrak{ue}} $
$\mathbb{K}\in \ \mathbb{n}\mathbb{L}$	$\equiv_{ML\forall}$	$\mathbb{H}^{\mathfrak{ue}}$	
$\mathbb{K} \in \mathbb{L}$	$\equiv_{ML\forall}$	$\mathbb{H}^{\mathfrak{ue}}$	$\mathbb{H}^{\mathfrak{ue}}$

	Both	\mathbb{K}	$\overline{\mathbb{K}}$
$\mathbb{K}\in\mathbb{Unl}$:≃:	ue	ue
$\mathbb{K} \in \mathbb{UL}$:≃:	ue	$ \boxplus^{\mathfrak{ue}} $
$\mathbb{K}\in \ \mathbb{nL}$:≃:	$\mathbb{H}^{\mathfrak{ue}}$	ue
$\mathbb{K} \in \mathbb{L}$:≃:	$\mathbb{H}^{\mathfrak{ue}}$	$\mathbb{H}^{\mathfrak{ue}}$

Theorem: for Kripke models (possibly known; E.Z. 2017)

	Both	\mathbb{K}	$\overline{\mathbb{K}}$	E
$\mathbb{K}\in \mathbb{V}\mathbb{N}$	≡ _{ML∀}			
$\mathbb{K}\in \ \mathbb{UL}$	≡ml∀		⊎ ue	
$\mathbb{K}\in \ \mathbb{nL}$	$\equiv_{ML\forall}$	$ \exists ue $		
$\mathbb{K} \in \mathbb{L}$	≡mla	$ \exists \mathfrak{ue} $	⊎ ue	

Both	K	$\overline{\mathbb{K}}$
:≃:	ue	ue
:::	ue	⊎ ue
:~:	⊎ ue	ue
:≃:	$ \exists \mathfrak{ue} $	⊎ ue

- Criteria for other semantics of the modal language:
 - neighbourhood semantics
 - topological semantics
 - algebraic semantics

3

- Criteria for other semantics of the modal language:
 - neighbourhood semantics
 - topological semantics
 - algebraic semantics
- Criteria for other languages:
 - add modalities: converse (tense) □⁻¹, inequality [≠], transitive closure
 ⊞, graded modalities ◊^{≥n}, hybrid logic (nominals) @_i
 - infinitary modal language (for any set Φ of formulas $\bigwedge \Phi$ is a formula):
 - classes of models definable by a single infinitary modal formula,
 - classes of models definable by a class (!) of infinitary modal formula,
 - intuitionistic propositional language
 - modal predicate language

- Criteria for other semantics of the modal language:
 - neighbourhood semantics
 - topological semantics
 - algebraic semantics
- Criteria for other languages:
 - add modalities: converse (tense) □⁻¹, inequality [≠], transitive closure
 ⊞, graded modalities ◊^{≥n}, hybrid logic (nominals) @_i
 - infinitary modal language (for any set Φ of formulas $\bigwedge \Phi$ is a formula):
 - classes of models definable by a single infinitary modal formula,
 - classes of models definable by a class (!) of infinitary modal formula,
 - intuitionistic propositional language
 - modal predicate language
- [Areces, Carreiro, Figueira, 2014]: general criteria for an arbitrary language that is a "suitable" fragment o the first-order language, but:
 - their results apply only to classes of pointed models,
 - so the task is to extend (if possible) their results to classes of models.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 ● ○○○

- Criteria for other semantics of the modal language:
 - neighbourhood semantics
 - topological semantics
 - algebraic semantics
- Criteria for other languages:
 - add modalities: converse (tense) □⁻¹, inequality [≠], transitive closure
 ⊞, graded modalities ◊^{≥n}, hybrid logic (nominals) @_i
 - infinitary modal language (for any set Φ of formulas $\bigwedge \Phi$ is a formula):
 - classes of models definable by a single infinitary modal formula,
 - classes of models definable by a class (!) of infinitary modal formula,
 - intuitionistic propositional language
 - modal predicate language
- [Areces, Carreiro, Figueira, 2014]: general criteria for an arbitrary language that is a "suitable" fragment o the first-order language, but:
 - their results apply only to classes of pointed models,
 - so the task is to extend (if possible) their results to classes of models.

Thank you!

(日) (周) (日) (日) (日)

The modality of inequality $[\neq]$ | Check!

Theorem: for pointed models (M. de Rijke, 1992; E.Z. 2017)

	Both	\mathbb{K}	$\overline{\mathbb{K}}$
$\mathbb{K}\in\mathbb{U}\mathbb{n}\mathbb{L}$	$\equiv_{ML\neq}$		
$\mathbb{K} \in \mathbb{UL}$	≡ _{ML≠}		УΠ
$\mathbb{K}\in \ \mathbb{M}\mathbb{L}$	≡ _{ML≠}	УΠ	
$\mathbb{K} \in \mathbb{L}$	≡ _{ML≠}	УΠ	УΠ

	Both	\mathbb{K}	$\overline{\mathbb{K}}$
$\mathbb{K}\in\mathbb{U}\mathbb{n}\mathbb{L}$	\simeq_{\neq}	УС	УС
$\mathbb{K}\in \ \mathbb{U}\mathbb{L}$	\simeq_{\neq}	УC	УΠ
$\mathbb{K}\in \ \mathbb{ML}$	\simeq_{\neq}	УΠ	УС
$\mathbb{K} \in \mathbb{L}$	\simeq_{\neq}	УΠ	УΠ

Theorem: for models (M. de Rijke, 1992; E.Z. 2017)

	Both	\mathbb{K}	$\overline{\mathbb{K}}$	Both	\mathbb{K}	$\overline{\mathbb{K}}$
$\mathbb{K}\in\mathbb{Unl}$	≡ _{ML≠}	\hookrightarrow		:≃: _≠	\hookrightarrow VC	УС
$\mathbb{K} \in \mathbb{UL}$	≡ml≠	\hookrightarrow	УΠ	:≃: _≠	\hookrightarrow VC	УΠ
$\mathbb{K}\in \ \mathbb{nL}$	≡ _{ML≠}	⇔ ⊎ УП		:≃: _≠	⇔ ⊎ УП	УС
$\mathbb{K} \in \mathbb{L}$	■ML≠	$\hookrightarrow \ \ \forall \Pi$	УΠ	:≃: _≠	⇔ ⊎ УП	УΠ

Tense language | Criteria (check!)

Theorem: for pointed models (who? E.Z. 2017)

	Both	K	$\overline{\mathbb{K}}$
$\mathbb{K}\in\mathbb{U}\mathbb{n}\mathbb{L}$	$\equiv_{ML.t}$		
$\mathbb{K} \in \mathbb{U}\mathbb{L}$	$\equiv_{ML.t}$		УΠ
$\mathbb{K}\in \ \mathbb{M}\mathbb{L}$	$\equiv_{ML.t}$	УΠ	
$\mathbb{K} \in \mathbb{L}$	≡ _{ML.t}	УΠ	УΠ

	Both	\mathbb{K}	$\overline{\mathbb{K}}$
$\mathbb{K}\in\mathbb{U}\mathbb{n}\mathbb{L}$	\simeq_t	УС	УС
$\mathbb{K} \in \mathbb{UL}$	\simeq_t	УС	УΠ
$\mathbb{K}\in \ \mathbb{M}\mathbb{L}$	\simeq_t	УΠ	УС
$\mathbb{K} \in \mathbb{L}$	\simeq_t	УΠ	УΠ

Theorem: for models (who?; E.Z. 2017)

	Both	\mathbb{K}	$\overline{\mathbb{K}}$	Both	\mathbb{K}	$\overline{\mathbb{K}}$
$\mathbb{K}\in \mathbb{V}\mathbb{N}$	≡ _{ML.t}	\hookrightarrow		$:\simeq:_t$	\hookrightarrow_t VC	УС
$\mathbb{K} \in \mathbb{UL}$	≡ _{ML.t}	\hookrightarrow	УΠ	$:\simeq:_t$	\hookrightarrow_t VC	УΠ
$\mathbb{K}\in \ \mathbb{ML}$	$\equiv_{ML.t}$	⇔ ⊎ УП		$:\simeq:_t$	$\hookrightarrow_t \ \uplus \ \forall \Pi$	УC
$\mathbb{K} \in \mathbb{L}$	≡ _{ML.t}	⇔ ⊎ УП	УΠ	$:\simeq:_t$	$\hookrightarrow_t \ \uplus \ \forall \Pi$	УΠ

Graded modalities $\Diamond^{\geq n} \mid$ Criteria

Theorem: for pointed models (Maarten de Rijke, 2000)

	Both	\mathbb{K}	$\overline{\mathbb{K}}$
$\mathbb{K}\in\mathbb{W}\mathbb{N}\mathbb{L}$	≡ _{MLG}		
$\mathbb{K} \in \mathbb{UL}$	≡ _{MLG}		УΠ
$\mathbb{K}\in \ \mathbb{nL}$	≡ _{MLG}	УΠ	
$\mathbb{K} \in \mathbb{L}$	≡ _{MLG}	УΠ	УΠ

	Both	\mathbb{K}	$\overline{\mathbb{K}}$
$\mathbb{K}\in\mathbb{V}\mathbb{M}\mathbb{L}$	\simeq_{G}	УС	УС
$\mathbb{K} \in \mathbb{U}\mathbb{L}$	\simeq_{G}	УС	УΠ
$\mathbb{K}\in \mathbb{ML}$	\simeq_{G}	УΠ	УС
$\mathbb{K} \in \mathbb{L}$	\simeq_{G}	УΠ	УΠ

Theorem: for models (Maarten de Rijke did not write, check!)

	Both	K	$\overline{\mathbb{K}}$	Both	K	$\overline{\mathbb{K}}$
$\mathbb{K}\in\mathbb{V}\mathbb{M}\mathbb{L}$	≡ _{MLG}	\hookrightarrow		:≃:G	→ УС	УС
$\mathbb{K} \in \mathbb{UL}$	≡mlg	\hookrightarrow	УΠ	:~:G	⊖ VC	УП
$\mathbb{K}\in \mathbb{ML}$	≡ _{MLG}	$\hookrightarrow \ \ \forall \Pi$:≃:G	$\hookrightarrow \ \ \forall \Pi$	УС
$\mathbb{K} \in \mathbb{L}$	≡mlg	⇔ ⊎ УП	УΠ	:≃:G	$\hookrightarrow \ \ \forall \Pi$	УП

Intuitionistic propositional language | Criteria

Theorem: for pointed models (Piet Rodenburg 1986)

	Both	\mathbb{K}	$\overline{\mathbb{K}}$	
$\mathbb{K}\in\mathbb{V}\mathbb{M}\mathbb{L}$				
$\mathbb{K}\in \mathbb{UL}$				
$\mathbb{K}\in \ \mathbb{nL}$				
$\mathbb{K} \in \mathbb{L}$				

	Both	\mathbb{K}	$\overline{\mathbb{K}}$
$\mathbb{K}\in\mathbb{Unl}$			
$\mathbb{K} \in \mathbb{UL}$			
$\mathbb{K}\in \ \mathbb{nL}$			
$\mathbb{K} \in \mathbb{L}$			

Theorem: for models (Piet Rodenburg 1986)

	Both	\mathbb{K}	$\overline{\mathbb{K}}$
$\mathbb{K}\in\mathbb{V}\mathbb{M}\mathbb{L}$			
$\mathbb{K} \in \mathbb{UL}$			
$\mathbb{K}\in \ \mathbb{nL}$			
$\mathbb{K} \in \mathbb{L}$			

Both		\mathbb{K}		$\overline{\mathbb{K}}$	
:≃:	\hookrightarrow		УС	УС	
:≃:	\hookrightarrow		УС	УП	
:≃:	\hookrightarrow	⊎	УΠ	УС	
:≃:	\hookrightarrow	$ \exists $	УΠ	УП	

Intuitionistic propositional language | Criteria

Theorem: for pointed models

	Both	\mathbb{K}	$\overline{\mathbb{K}}$		Both	\mathbb{K}	$\overline{\mathbb{K}}$
$\mathbb{K}\in\mathbb{U}\mathbb{n}\mathbb{L}$				$\mathbb{K}\in\mathbb{W}\mathbb{n}\mathbb{L}$			
$\mathbb{K} \in \mathbb{U}\mathbb{L}$				$\mathbb{K} \in \mathbb{U}\mathbb{L}$			
$\mathbb{K}\in \ \mathbb{n}\mathbb{L}$				$\mathbb{K} \in \mathbb{R}$			
$\mathbb{K} \in \mathbb{L}$				$\mathbb{K} \in \mathbb{L}$			

Theorem: for models (Robert Goldblatt 2005)

	Both	\mathbb{K}	$\overline{\mathbb{K}}$
$\mathbb{K}\in\mathbb{Unl}$			
$\mathbb{K} \in \mathbb{UL}$			
$\mathbb{K}\in \ \mathbb{nL}$			
$\mathbb{K} \in \mathbb{L}$			

Both		\mathbb{K}		$\overline{\mathbb{K}}$	
:::	\hookrightarrow	$ \blacksquare $	pe	pe	
?					