Axiomatizability criteria in modal logic

Evgeny Zolin (Евгений Золин)

старший научный сотрудник
Кафедра математической логики и теории алгоритмов
Механико математический факультет
МГУ им. М.В.Ломоносова
Десятые Смирновские чтения по логике Философский факультет МГУ 15-17 июня 2017 года

Abstract model theory

Consider:
$\mathcal{L} \quad$ - a language (any set; its elements are called formulas)
$\mathcal{S} \quad$ - a class of structures or models
$\equiv \quad-$ a truth relation: $M \models A$ between $M \in \mathcal{S}$ and $A \in \mathcal{L}$

Abstract model theory

Consider:
$\mathcal{L} \quad$ - a language (any set; its elements are called formulas)
$\mathcal{S} \quad$ - a class of structures or models
\vDash

- a truth relation: $M \models A$ between $M \in \mathcal{S}$ and $A \in \mathcal{L}$

How can we "characterize"

- classes of models from \mathcal{S} definable by a single formula from \mathcal{L} ?
- classes of models from \mathcal{S} definable by a set of formulas from \mathcal{L} ?

Abstract model theory

Consider:
$\mathcal{L} \quad$ - a language (any set; its elements are called formulas)
$\mathcal{S} \quad$ - a class of structures or models
\vDash

- a truth relation: $M \models A$ between $M \in \mathcal{S}$ and $A \in \mathcal{L}$

How can we "characterize"

- classes of models from \mathcal{S} definable by a single formula from \mathcal{L} ?
- classes of models from \mathcal{S} definable by a set of formulas from \mathcal{L} ?

For a set of formulas $\Gamma \subseteq \mathcal{L}$ and a class of models $\mathbb{K} \subseteq \mathcal{S}$, we denote:

Models(Г)	$:=\{M \in \mathcal{S} \mid M \models \Gamma\}$
Theory (\mathbb{K})	$:=\{A \in \mathcal{L} \mid \mathbb{K} \models A\}$

The 4 "species" of classes

Definition. For a class of models $\mathbb{K} \subseteq \mathcal{S}$ we write:
$\mathbb{K} \in \mathbb{L} \quad$ if $\mathbb{K}=\operatorname{Models}(A)$, for some formula $A \in \mathcal{L}$.

The 4 "species" of classes

Definition. For a class of models $\mathbb{K} \subseteq \mathcal{S}$ we write:
$\mathbb{K} \in \mathbb{L} \quad$ if $\mathbb{K}=\operatorname{Models}(A)$, for some formula $A \in \mathcal{L}$.
$\mathbb{K} \in \cap \mathbb{L} \quad$ if $\mathbb{K}=\operatorname{Models}(\Gamma)$, for some set of formulas $\Gamma \subseteq \mathcal{L}$.
Equivalently: if $\mathbb{K}=\bigcap_{i \in I} \mathbb{K}_{i}$ for some classes $\mathbb{K}_{i} \in \mathbb{L}$.

The 4 "species" of classes

Definition. For a class of models $\mathbb{K} \subseteq \mathcal{S}$ we write:
$\mathbb{K} \in \mathbb{L} \quad$ if $\mathbb{K}=\operatorname{Models}(A)$, for some formula $A \in \mathcal{L}$.
$\mathbb{K} \in \cap \mathbb{L} \quad$ if $\mathbb{K}=\operatorname{Models}(\Gamma)$, for some set of formulas $\Gamma \subseteq \mathcal{L}$.
Equivalently: if $\mathbb{K}=\bigcap_{i \in I} \mathbb{K}_{i}$ for some classes $\mathbb{K}_{i} \in \mathbb{L}$.
$\mathbb{K} \in \mathbb{U} \quad$ if $\quad \mathbb{K}=\bigcup_{i \in I} \mathbb{K}_{i}$ for some classes $\mathbb{K}_{i} \in \mathbb{L}$.

The 4 "species" of classes

Definition. For a class of models $\mathbb{K} \subseteq \mathcal{S}$ we write:
$\begin{array}{lll}\mathbb{K} \in \mathbb{L} & \text { if } & \mathbb{K}=\operatorname{Models}(A), \text { for some formula } A \in \mathcal{L} . \\ \mathbb{K} \in \mathbb{L} & \text { if } & \mathbb{K}=\operatorname{Models}(\Gamma), \text { for some set of formulas } \Gamma \subseteq \mathcal{L} .\end{array}$
Equivalently: if $\mathbb{K}=\bigcap_{i \in I} \mathbb{K}_{i}$ for some classes $\mathbb{K}_{i} \in \mathbb{L}$.
$\mathbb{K} \in \mathbb{U} \quad$ if $\quad \mathbb{K}=\bigcup_{i \in I} \mathbb{K}_{i}$ for some classes $\mathbb{K}_{i} \in \mathbb{L}$.
$\mathbb{K} \in \cup \in \mathbb{L} \quad$ if $\quad \mathbb{K}=\bigcup_{i \in I} \bigcap_{j \in J_{i}} \mathbb{K}_{i, j}$ for some classes $\mathbb{K}_{i, j} \in \mathbb{L}$.

The 4 "species" of classes

Definition. For a class of models $\mathbb{K} \subseteq \mathcal{S}$ we write:
$\mathbb{K} \in \mathbb{L} \quad$ if $\mathbb{K}=\operatorname{Models}(A)$, for some formula $A \in \mathcal{L}$.
$\mathbb{K} \in \cap \mathbb{L} \quad$ if $\mathbb{K}=\operatorname{Models}(\Gamma)$, for some set of formulas $\Gamma \subseteq \mathcal{L}$.
Equivalently: if $\mathbb{K}=\bigcap_{i \in I} \mathbb{K}_{i}$ for some classes $\mathbb{K}_{i} \in \mathbb{L}$.
$\mathbb{K} \in \mathbb{U} \quad$ if $\quad \mathbb{K}=\bigcup_{i \in I} \mathbb{K}_{i}$ for some classes $\mathbb{K}_{i} \in \mathbb{L}$.
$\mathbb{K} \in \cup \cap \mathbb{L} \quad$ if $\quad \mathbb{K}=\bigcup_{i \in I} \bigcap_{j \in J_{i}} \mathbb{K}_{i, j}$ for some classes $\mathbb{K}_{i, j} \in \mathbb{L}$.
For the "elementary" (i.e. first-order) language \mathcal{L}, the terminology is:
$\mathbb{K} \in \mathbb{L} \quad$ - an elementary class of models (finitely axiomatizable)
$\mathbb{K} \in \cap \mathbb{L} \quad-a \quad \Delta$-elementary class of models (axiomatizable)
$\mathbb{K} \in \mathbb{U} \mathbb{L} \quad-a \quad \sum$-elementary class of models (co-axiomatizable?)
$\mathbb{K} \in \mathbb{U} \mathbb{R} \mathbb{L}$ - a $\Sigma \Delta$-elementary class of models

The hierarchy of the 4 species of classes

The hierarchy of the 4 species of classes

- Classes in \mathbb{L} : the classes of all groups, all rings, all fields
- Classes in $\cap \mathbb{L}$: infinite groups, infinite rings, infinite fields
- Classes in $\mathbb{U} \mathbb{L}$: finite groups, finite rings, finite fields
- Classes in ש®®L: infinite fields of characteristic $p>0$; infinite finitely dimensional vector spaces
- Not even in $\mathbb{U} \mathbb{L}$: well-ordered sets, periodic groups, simple groups

First-order language: Relations / functions between models

Isomorphism of two models
$M \cong N \quad \leftrightharpoons \quad \exists$ bijection that preserves all predicates and functions

First-order language: Relations / functions between models

Isomorphism of two models
$M \cong N \quad \leftrightharpoons \quad \exists$ bijection that preserves all predicates and functions
Elementary equivalence of two models
$M \equiv_{\mathrm{FO}} N \leftrightharpoons$ for every formula $A \in \mathrm{FO}: \quad M \models A \Longleftrightarrow N \models A$

First-order language: Relations / functions between models

Isomorphism of two models
$M \cong N \quad \leftrightharpoons \quad \exists$ bijection that preserves all predicates and functions
Elementary equivalence of two models
$M \equiv_{\text {FO }} N \leftrightharpoons$ for every formula $A \in \mathrm{FO}: \quad M \models A \Longleftrightarrow N \models A$
Ultraproduct of a family of models: $M=\prod_{i \in I}^{U} M_{i}$
tós' Theorem: $\quad M \models A \quad \Longleftrightarrow \quad\left\{i \in I \mid M_{i} \models A\right\} \in U$

First-order language: Relations / functions between models

 Isomorphism of two models$M \cong N \quad \leftrightharpoons \quad \exists$ bijection that preserves all predicates and functions
Elementary equivalence of two models
$M \equiv_{\text {FO }} N \leftrightharpoons$ for every formula $A \in \mathrm{FO}: \quad M \models A \Longleftrightarrow N \models A$
Ultraproduct of a family of models: $M=\prod_{i \in I}^{U} M_{i}$
tós' Theorem: $\quad M \models A \quad \Longleftrightarrow \quad\left\{i \in I \mid M_{i} \models A\right\} \in U$
Ultrapower of a model N
If every $M_{i}=N$ then their ultraproduct is called the ultrapower: $M=N^{U}$
A model and its ultrapower are elementary equivalent: $N \equiv_{\text {FO }} N^{U}$

First-order language | Criteria for the 4 species

Theorem (Keisler, 1961)

	Both	\mathbb{K}	$\overline{\mathbb{K}}$
$\mathbb{K} \in \cup \mathbb{L} \mathbb{L}$	$\equiv_{\text {FO }}$		
$\mathbb{K} \in \mathbb{L}$	$\equiv_{\text {FO }}$		УП
$\mathbb{K} \in \mathbb{L}$	$\equiv_{\text {FO }}$	УП	
$\mathbb{K} \in \mathbb{L}$	$\equiv_{\text {FO }}$	УП	УП

Legend: УП = ultraproduct

First-order language | Criteria for the 4 species

Theorem (Keisler, 1961)

	Both	\mathbb{K}	$\overline{\mathbb{K}}$
$\mathbb{K} \in \cup \mathbb{L}$	$\equiv_{\text {FO }}$		
$\mathbb{K} \in \mathbb{L}$	$\equiv_{\text {FO }}$		УП
$\mathbb{K} \in \mathbb{L}$	$\equiv_{\text {FO }}$	УП	
$\mathbb{K} \in \quad \mathbb{L}$	$\equiv_{\text {FO }}$	УП	УП

(Keisler, 1961; Shelah, 1971)

	Both	\mathbb{K}	$\overline{\mathbb{K}}$
$\mathbb{K} \in \cup \cap \mathbb{L}$	\cong	$У C$	$У C$
$\mathbb{K} \in \cup \mathbb{L}$	\cong	$У C$	$У П$
$\mathbb{K} \in \mathbb{L}$	\cong	$У П$	$У C$
$\mathbb{K} \in \mathbb{L}$	\cong	$У \square$	$У П$

Legend: $У П$ = ultraproduct
$\mathrm{VC}=$ ultrapower

First-order language | Criteria for the 4 species

Theorem (Keisler, 1961)

	Both	\mathbb{K}	$\overline{\mathbb{K}}$
$\mathbb{K} \in \cup \cap \mathbb{L}$	$\equiv_{\text {FO }}$		
$\mathbb{K} \in \cup \mathbb{L}$	$\equiv_{\text {FO }}$		УП
$\mathbb{K} \in \mathbb{L}$	$\equiv_{\text {FO }}$	УП	
$\mathbb{K} \in \mathbb{L}$	$\equiv_{\text {FO }}$	УП	УП

(Keisler, 1961; Shelah, 1971)

	Both	\mathbb{K}	$\overline{\mathbb{K}}$
$\mathbb{K} \in \cup \cap \mathbb{L}$	\cong	$У С$	$У С$
$\mathbb{K} \in \cup \mathbb{L}$	\cong	$У С$	$У П$
$\mathbb{K} \in \mathbb{L}$	\cong	$У П$	$У С$
$\mathbb{K} \in \mathbb{L}$	\cong	$У П$	$У П$

$$
\text { Legend: } \begin{aligned}
\mathrm{Y} П & =\text { ultraproduct } \\
\mathrm{YC} & =\text { ultrapower }
\end{aligned}
$$

Main reason for the symmetry in the above tables:

$$
M \not \models A \quad \Longleftrightarrow \quad M \models \neg A
$$

Modal language | Kripke semantics

Formulas: $\quad p_{i}|\neg A|(A \wedge B)|(A \vee B)|(A \rightarrow B) \mid \square A$

Modal language | Kripke semantics

Formulas: $\quad p_{i}|\neg A|(A \wedge B)|(A \vee B)|(A \rightarrow B) \mid \square A$
Kripke semantics:
Kripke model: $M=(W, R, V)$, where
$W \neq \varnothing \quad$ - a nonempty set of worlds
$R \subseteq W \times W \quad-$ a accessibility relation between worlds
$V\left(p_{i}\right) \subseteq W \quad-$ a valuation of variables

Modal language | Kripke semantics

Formulas: $\quad p_{i}|\neg A|(A \wedge B)|(A \vee B)|(A \rightarrow B) \mid \square A$
Kripke semantics:
Kripke model: $M=(W, R, V)$, where

$$
\begin{array}{ll}
W \neq \varnothing & \text { - a nonempty set of worlds } \\
R \subseteq W \times W & - \text { a accessibility relation between worlds } \\
V\left(p_{i}\right) \subseteq W & - \text { a valuation of variables }
\end{array}
$$

Truth of a formula is defined in a pointed model (M, x) :

$$
\begin{array}{lll}
M, x \models p_{i} & \leftrightharpoons & x \in V\left(p_{i}\right) \\
M, x \models \neg A & \leftrightharpoons & M, x \neq A \\
M, x \models A \wedge B & \leftrightharpoons & M, x \models A \text { and } M, x \neq B \\
M, x \models A \vee B & \leftrightharpoons & M, x \models A \text { or } M, x \models B \\
M, x \models A \rightarrow B & \leftrightharpoons & M, x \models A \quad \Rightarrow \quad M, x \models B \\
M, x \models \square A & \leftrightharpoons & \text { for every } y \in W(x R y \Rightarrow M, y \models A)
\end{array}
$$

Truth of a formula in a model: $M \models A$ if $\forall x \in W \quad M, x \models A$.

Modal language | Relations \& operations between models

Modal equivalence of two (pointed) Kripke models
$M \equiv_{\mathrm{ML}} N \leftrightharpoons$ for every formula $A \in \mathrm{ML}: \quad M \models A \Longleftrightarrow N \models A$

Modal language | Relations \& operations between models

Modal equivalence of two (pointed) Kripke models
$M \equiv_{\mathrm{ML}} N \leftrightharpoons$ for every formula $A \in \mathrm{ML}: \quad M \models A \Longleftrightarrow N \models A$
Bisimulation between two pointed Kripke models
$M, a \simeq N, b-$ respects the valuation of variables every step in M is "simulated" by some step in N every step in N is "simulated" by some step in M

Modal language | Relations \& operations between models

Modal equivalence of two (pointed) Kripke models
$M \equiv_{\mathrm{ML}} N \leftrightharpoons$ for every formula $A \in \mathrm{ML}: \quad M \models A \Longleftrightarrow N \models A$
Bisimulation between two pointed Kripke models
$M, a \simeq N, b-$ respects the valuation of variables every step in M is "simulated" by some step in N every step in N is "simulated" by some step in M

Global bisimulation between Kripke models
$M: \simeq: N \quad-$ bisimulation that covers the whole models M and N

Modal language | Relations \& operations between models

Modal equivalence of two (pointed) Kripke models
$M \equiv_{\mathrm{ML}} N \leftrightharpoons$ for every formula $A \in \mathrm{ML}: \quad M \models A \Longleftrightarrow N \models A$
Bisimulation between two pointed Kripke models
$M, a \simeq N, b-$ respects the valuation of variables every step in M is "simulated" by some step in N every step in N is "simulated" by some step in M

Global bisimulation between Kripke models
$M: \simeq: N \quad-$ bisimulation that covers the whole models M and N

Generated submodel: $M \hookrightarrow N$
Disjoint union of models: $M=\underset{i \in I}{\uplus} M_{i}$

Modal language | Criteria in terms of $У \Pi$ and VC

Theorem: for pointed Kripke models (Maarten de Rijke, 1993)

	Both	\mathbb{K}	\bar{K}
$\mathbb{K} \in \cup \cap \mathbb{L}$	\equiv_{ML}		
$\mathbb{K} \in \cup \mathbb{L}$	\equiv_{ML}		$У П$
$\mathbb{K} \in \mathbb{L}$	\equiv_{ML}	УП	
$\mathbb{K} \in \mathbb{L}$	\equiv_{ML}	$У П$	$У П$

Modal language | Criteria in terms of $У \square$ and $У С$

Theorem: for pointed Kripke models (Maarten de Rijke, 1993)

	Both	\mathbb{K}	$\overline{\mathbb{K}}$
$\mathbb{K} \in \cup \cap \mathbb{L}$	\equiv_{ML}		
$\mathbb{K} \in \cup \mathbb{L}$	\equiv_{ML}		$У П$
$\mathbb{K} \in \mathbb{L}$	\equiv_{ML}	$У П$	
$\mathbb{K} \in \mathbb{L}$	\equiv_{ML}	$У П$	$У П$

	Both	\mathbb{K}	\bar{K}
$\mathbb{K} \in \cup \cap \mathbb{L}$	\simeq	$У С$	$У С$
$\mathbb{K} \in \cup \mathbb{L}$	\simeq	$У С$	$У П$
$\mathbb{K} \in \mathbb{L}$	\simeq	$У П$	$У С$
$\mathbb{K} \in \mathbb{L}$	\simeq	$У П$	$У П$

Modal language | Criteria in terms of $\mathrm{V} \Pi$ and VC

Theorem: for pointed Kripke models (Maarten de Rijke, 1993)

	Both	\mathbb{K}	$\overline{\mathbb{K}}$
$\mathbb{K} \in \cup \cap \mathbb{L}$	\equiv_{ML}		
$\mathbb{K} \in \quad \cup \mathbb{L}$	\equiv_{ML}		$У П$
$\mathbb{K} \in \mathbb{L}$	\equiv_{ML}	$У П$	
$\mathbb{K} \in \quad \mathbb{L}$	\equiv_{ML}	$У П$	$У П$

	Both	\mathbb{K}	$\overline{\mathbb{K}}$
$\mathbb{K} \in \cup \cap \mathbb{L}$	\simeq	$У С$	$У С$
$\mathbb{K} \in \mathbb{L}$	\simeq	$У С$	$У П$
$\mathbb{K} \in \mathbb{L}$	\simeq	$У П$	$У С$
$\mathbb{K} \in \mathbb{L}$	\simeq	$У П$	$У П$

Theorem: for Kripke models (M. de Rijke, H. Sturm, 2001; E.Z. 2017)

	Both	\mathbb{K}	$\overline{\mathbb{K}}$
$\mathbb{K} \in \cup \cap \mathbb{L}$	\equiv_{ML}	\hookrightarrow	
$\mathbb{K} \in \quad \mathbb{L}$	\equiv_{ML}	\hookrightarrow	$У П$
$\mathbb{K} \in \mathbb{L} \mathbb{L}$	\equiv_{ML}	$\hookrightarrow \uplus У П$	
$\mathbb{K} \in \mathbb{L}$	\equiv_{ML}	$\hookrightarrow \uplus У П$	$У П$

Both	\mathbb{K}		$\overline{\mathbb{K}}$
$: \simeq:$	\hookrightarrow	$У С$	$У С$
$: \simeq:$	\hookrightarrow	$У С$	$У П$
$: \simeq:$	\hookrightarrow	$У П$	$У С$
$: \simeq:$	\hookrightarrow	$У П$	$У П$

Modal language: "purely modal" operations on models

Ultra-extension of a Kripke model $M=(W, R, V)$

- is a Kripke model $M^{\mathfrak{u e}}=\left(W^{\mathfrak{u e}}, R^{\mathfrak{u e}}, V^{\mathfrak{u e}}\right)$, where

worlds:	$W^{\text {ue }}$	- all ultrafilters over the set $W ;$
relation:	$\alpha R^{\mathfrak{u e}} \beta$	$\leftrightharpoons \forall X \subseteq W(\diamond X \in \alpha \Leftarrow X \in \beta)$
		$\Leftrightarrow \forall X \subseteq W(\square X \in \alpha \Rightarrow X \in \beta)$
valuation:	$\alpha=p_{i}$	$\leftrightharpoons V\left(p_{i}\right) \in \alpha$

Modal language: "purely modal" operations on models

Ultra-extension of a Kripke model $M=(W, R, V)$

- is a Kripke model $M^{\mathfrak{u e}}=\left(W^{\mathfrak{u e}}, R^{\mathfrak{u e}}, V^{\mathfrak{u e}}\right)$, where

worlds:	$W^{\mathfrak{u e}}$	- all ultrafilters over the set $W ;$
relation:	$\alpha R^{\mathfrak{u e}} \beta$	$\leftrightharpoons \forall X \subseteq W(\diamond X \in \alpha \Leftarrow X \in \beta)$
		$\Leftrightarrow \forall X \subseteq W(\square X \in \alpha \Rightarrow X \in \beta)$
valuation:	$\alpha \models p_{i}$	$\leftrightharpoons V\left(p_{i}\right) \in \alpha$

A model and its ultra-extension are modally equivalent: $\quad M \equiv_{\mathrm{ML}} M^{u e}$

Modal language: "purely modal" operations on models

Ultra-extension of a Kripke model $M=(W, R, V)$

- is a Kripke model $M^{\mathfrak{u e}}=\left(W^{\mathfrak{u e}}, R^{\mathfrak{u e}}, V^{\mathfrak{u e}}\right)$, where
worlds: $\quad W^{\text {ue }} \quad-$ all ultrafilters over the set W;
relation: $\quad \alpha R^{\mathfrak{u e}} \beta \leftrightharpoons \forall X \subseteq W(\diamond X \in \alpha \Leftarrow X \in \beta)$
$\Leftrightarrow \quad \forall X \subseteq W(\square X \in \alpha \Rightarrow X \in \beta)$
valuation: $\alpha \models p_{i} \quad \leftrightharpoons \quad V\left(p_{i}\right) \in \alpha$

A model and its ultra-extension are modally equivalent: $M \equiv{ }_{\mathrm{ML}} M^{\mathfrak{u e}}$

Ultra-union of a family of pointed Kripke models $\left(M_{i}, a_{i}\right)_{i \in I}$
$M=\left(\left(\underset{i \in I}{\uplus} M_{i}\right)^{\text {ue }}, \alpha\right)$, all co-finite subsets of $\left\{\left\langle a_{i}, i\right\rangle \mid i \in I\right\}$ are in α.
Observation. Ultra-union behaves like the ultra-product.

Modal language: "purely modal" criteria

Theorem: for pointed Kripke models (Yde Venema, 1999; E.Z. 2017)

	Both	\mathbb{K}	\bar{K}
$\mathbb{K} \in \cup \cap \mathbb{L}$	\equiv_{ML}		
$\mathbb{K} \in \cup \mathbb{L}$	\equiv_{ML}		\uplus^{ue}
$\mathbb{K} \in \mathbb{L}$	\equiv_{ML}	\uplus^{ul}	
$\mathbb{K} \in \mathbb{L}$	\equiv_{ML}	\uplus^{ue}	\uplus^{ue}

Modal language: "purely modal" criteria

Theorem: for pointed Kripke models (Yde Venema, 1999; E.Z. 2017)

	Both	\mathbb{K}	\mathbb{K}
$\mathbb{K} \in \cup \cap \mathbb{L}$	\equiv_{ML}		
$\mathbb{K} \in \quad \cup \mathbb{L}$	\equiv_{ML}		$\uplus^{\text {ue }}$
$\mathbb{K} \in \quad \cap \mathbb{L}$	$\equiv_{M L}$	$\uplus^{\text {ue }}$	
$\mathbb{K} \in \quad \mathbb{L}$	$\equiv_{M L}$	$\uplus^{\text {ue }}$	$\uplus^{\text {ue }}$

	Both	\mathbb{K}	\mathbb{K}
$\mathbb{K} \in \mathbb{U} \mathbb{L}$	\simeq	$\mathfrak{u e}$	$\mathfrak{u e}$
$\mathbb{K} \in \mathbb{L}$	\simeq	$\mathfrak{u e}$	$\uplus^{\text {ue }}$
$\mathbb{K} \in \mathbb{L}$	\simeq	$\uplus^{\mathfrak{u e}}$	$\mathfrak{u e}$
$\mathbb{K} \in \mathbb{L}$	\simeq	$\uplus^{\mathfrak{u e}}$	$\uplus^{\mathfrak{u e}}$

Modal language: "purely modal" criteria

Theorem: for pointed Kripke models (Yde Venema, 1999; E.Z. 2017)

	Both	\mathbb{K}	\mathbb{K}
$\mathbb{K} \in \cup \cap \mathbb{L}$	\equiv_{ML}		
$\mathbb{K} \in \cup \mathbb{L}$	\equiv_{ML}		$\uplus^{\text {ue }}$
$\mathbb{K} \in \mathbb{L}$	\equiv_{ML}	$\uplus^{\text {ue }}$	
$\mathbb{K} \in \quad \mathbb{L}$	$\equiv_{M L}$	$\uplus^{\text {ue }}$	$\uplus^{\text {ue }}$

	Both	\mathbb{K}	$\overline{\mathbb{K}}$
$\mathbb{K} \in \mathbb{\cup} \mathbb{L}$	\simeq	$\mathfrak{u e}$	$\mathfrak{u e}$
$\mathbb{K} \in \mathbb{L}$	\simeq	$\mathfrak{u e}$	$\uplus^{\mathfrak{u e}}$
$\mathbb{K} \in \mathbb{L} \mathbb{L}$	\simeq	$\uplus^{\mathfrak{u e}}$	$\mathfrak{u e}$
$\mathbb{K} \in \mathbb{L}$	\simeq	$\uplus^{\mathfrak{u e}}$	$\uplus^{\mathfrak{u e}}$

Theorem: for Kripke models (Yde Venema, 1999; E.Z. 2017)

	Both	\mathbb{K}	$\overline{\mathbb{K}}$
$\mathbb{K} \in$ שกL	\equiv_{ML}	\hookrightarrow	
$\mathbb{K} \in \mathbb{U}$?		
$\mathbb{K} \in \cap \mathbb{L}$	$\equiv_{\text {ML }}$	$\hookrightarrow \uplus \mathfrak{u e}$	
$\mathbb{K} \in \mathbb{L}$?	

Both	\mathbb{K}	$\overline{\mathbb{K}}$	
$: \simeq:$	\hookrightarrow	$\mathfrak{u e}$	
$\mathfrak{u e}$			
$?$			
$: \simeq:$	$\hookrightarrow \uplus \uplus \mathfrak{u e}$	$\mathfrak{u e}$	
$?$			

Universal modality | "purely modal" criteria

Theorem: for pointed Kripke models (possibly known; E.Z. 2017)

	Both	\mathbb{K}	$\overline{\mathbb{K}}$
$\mathbb{K} \in \cup \cap \mathbb{L}$	$\equiv_{\text {MLV }}$		
$\mathbb{K} \in \mathbb{U L}$	$\equiv_{\text {MLV }}$		$\uplus^{\text {ue }}$
$\mathbb{K} \in \mathbb{R} \mathbb{L}$	$\equiv_{\text {MLV }}$	$\uplus^{\text {ue }}$	
$\mathbb{K} \in \mathbb{L}$	$\equiv_{\text {MLV }}$	$\uplus^{\text {ue }}$	$\uplus^{\text {ue }}$

	Both	\mathbb{K}	$\overline{\mathbb{K}}$
$\mathbb{K} \in \mathbb{U} \mathbb{L}$	$: \simeq:$	$\mathfrak{u e}$	$\mathfrak{u e}$
$\mathbb{K} \in \mathbb{U} \mathbb{L}$	$: \simeq:$	$\mathfrak{u e}$	$\uplus^{\mathfrak{u e}}$
$\mathbb{K} \in \cap \mathbb{L}$	$: \simeq:$	$\uplus^{\mathfrak{u e}}$	$\mathfrak{u e}$
$\mathbb{K} \in \mathbb{L}$	$: \simeq:$	$\uplus^{\mathfrak{u e}}$	$\uplus^{\mathfrak{u e}}$

Theorem: for Kripke models (possibly known; E.Z. 2017)

	Both	\mathbb{K}	$\overline{\mathbb{K}}$
$\mathbb{K} \in \cup \cap \mathbb{L}$	$\equiv_{M L \forall}$		
$\mathbb{K} \in \cup \mathbb{L}$	$\equiv_{M L \forall}$		$\uplus \mathfrak{u e}$
$\mathbb{K} \in \cap \mathbb{L}$	$\equiv_{M L \forall}$	$\uplus \mathfrak{u e}$	
$\mathbb{K} \in \mathbb{L}$	$\equiv_{M L \forall}$	$\uplus \mathfrak{u e}$	$\uplus \mathfrak{u e}$

Both	\mathbb{K}	$\overline{\mathbb{K}}$
$: \simeq:$	$\mathfrak{u e}$	$\mathfrak{u e}$
$: \simeq:$	$\mathfrak{u e}$	$\uplus \mathfrak{u e}$
$: \simeq:$	$\uplus \mathfrak{u e}$	$\mathfrak{u e}$
$: \simeq:$	$\uplus \mathfrak{u e}$	$\uplus \mathfrak{u e}$

Further directions

- Criteria for other semantics of the modal language:
- neighbourhood semantics
- topological semantics
- algebraic semantics

Further directions

- Criteria for other semantics of the modal language:
- neighbourhood semantics
- topological semantics
- algebraic semantics
- Criteria for other languages:
- add modalities: converse (tense) \square^{-1}, inequality $[\neq]$, transitive closure \boxplus, graded modalities $\diamond \geqslant n$, hybrid logic (nominals) $@_{i}$
- infinitary modal language (for any set Φ of formulas $\Lambda \Phi$ is a formula): - classes of models definable by a single infinitary modal formula, - classes of models definable by a class (!) of infinitary modal formula,
- intuitionistic propositional language
- modal predicate language

Further directions

- Criteria for other semantics of the modal language:
- neighbourhood semantics
- topological semantics
- algebraic semantics
- Criteria for other languages:
- add modalities: converse (tense) \square^{-1}, inequality $[\neq]$, transitive closure \boxplus, graded modalities $\diamond \geqslant n$, hybrid logic (nominals) $@_{i}$
- infinitary modal language (for any set Φ of formulas $\Lambda \Phi$ is a formula): - classes of models definable by a single infinitary modal formula, - classes of models definable by a class (!) of infinitary modal formula,
- intuitionistic propositional language
- modal predicate language
- [Areces, Carreiro, Figueira, 2014]: general criteria for an arbitrary language that is a "suitable" fragment o the first-order language, but:
- their results apply only to classes of pointed models,
- so the task is to extend (if possible) their results to classes of models.

Further directions

- Criteria for other semantics of the modal language:
- neighbourhood semantics
- topological semantics
- algebraic semantics
- Criteria for other languages:
- add modalities: converse (tense) \square^{-1}, inequality $[\neq]$, transitive closure \boxplus, graded modalities $\diamond \geqslant n$, hybrid logic (nominals) $@_{i}$
- infinitary modal language (for any set Φ of formulas $\Lambda \Phi$ is a formula): - classes of models definable by a single infinitary modal formula,
- classes of models definable by a class (!) of infinitary modal formula,
- intuitionistic propositional language
- modal predicate language
- [Areces, Carreiro, Figueira, 2014]: general criteria for an arbitrary language that is a "suitable" fragment o the first-order language, but:
- their results apply only to classes of pointed models,
- so the task is to extend (if possible) their results to classes of models.

Thank you!

The modality of inequality $[\neq]$ | Check!

Theorem: for pointed models (M. de Rijke, 1992; E.Z. 2017)

	Both	K	$\overline{\mathbb{K}}$
$\mathbb{K} \in$ שกL	\#ML $=$		
$\mathbb{K} \in \mathbb{U}$	$\overline{\text { ML }}$ ¢ $^{\text {m }}$		Уп
$\mathbb{K} \in \cap \mathbb{L}$	\#ML \%	Уп	
$\mathbb{K} \in \mathbb{L}$	$\equiv_{\text {ML }}$ \%	уп	уп

	Both	\mathbb{K}	$\overline{\mathrm{K}}$
$\mathbb{K} \in$ שกL	$\simeq_{ \pm}$	yc	yc
$\mathbb{K} \in \mathbb{U}$	\simeq_{\neq}	yc	уп
$\mathbb{K} \in \mathbb{R}$	\sim_{\neq}	уп	yc
$\mathbb{K} \in \mathbb{L}$	\simeq_{\neq}	уп	уп

Theorem: for models (M. de Rijke, 1992; E.Z. 2017)

	Both	\mathbb{K}	$\overline{\mathbb{K}}$
$\mathbb{K} \in$ שกL	\#ML;	\hookrightarrow	
$\mathbb{K} \in \mathbb{U}$	\#ML \neq	\hookrightarrow	уп
$\mathbb{K} \in$ กL	\#ML\#	$\hookrightarrow \uplus У \square$	
$\mathbb{K} \in \mathbb{L}$	\#ML ${ }^{\text {\% }}$	\hookrightarrow УП	уп

Both	\mathbb{K}		$\overline{\mathbb{K}}$
$: \simeq_{\neq}$	\hookrightarrow	УС	УС
$: \simeq_{\neq}$	\hookrightarrow	УС	УП
$: \simeq_{: \neq}$	$\hookrightarrow \uplus$	УП	УС
$: \simeq_{: \neq}$	$\hookrightarrow \uplus$	УП	УП

Tense language | Criteria (check!)

Theorem: for pointed models (who? E.Z. 2017)

	Both	\mathbb{K}	$\overline{\mathbb{K}}$
$\mathbb{K} \in \cup \cap \mathbb{L}$	$\equiv_{\text {ML.t }}$		
$\mathbb{K} \in \cup \mathbb{L}$	$\equiv_{\text {ML.t }}$		УП
$\mathbb{K} \in \mathbb{L} \mathbb{L}$	$\equiv_{\text {ML.t }}$	УП	
$\mathbb{K} \in \mathbb{L}$	$\equiv_{\text {ML.t }}$	УП	УП

	Both	\mathbb{K}	$\overline{\mathbb{K}}$
$\mathbb{K} \in \cup \cap \mathbb{L}$	\simeq_{t}	$У С$	$У С$
$\mathbb{K} \in \mathbb{L}$	\simeq_{t}	$У С$	$У П$
$\mathbb{K} \in \mathbb{L}$	\simeq_{t}	$У П$	$У С$
$\mathbb{K} \in \mathbb{L}$	\simeq_{t}	$У П$	$У П$

Theorem: for models (who?; E.Z. 2017)

	Both	\mathbb{K}	$\overline{\mathbb{K}}$
$\mathbb{K} \in \cup \cap \mathbb{L}$	$\equiv_{\text {ML.t }}$	\hookrightarrow	
$\mathbb{K} \in \cup \mathbb{L}$	$\equiv_{\text {ML.t }}$	\hookrightarrow	УП
$\mathbb{K} \in \mathbb{L}$	$\equiv_{\text {ML.t }}$	$\hookrightarrow \uplus У П$	
$\mathbb{K} \in \mathbb{L}$	$\equiv_{\text {ML.t }}$	$\hookrightarrow \uplus У П$	УП

Both	\mathbb{K}		$\overline{\mathbb{K}}$
$: \simeq:_{t}$	\hookrightarrow_{t}	$У С$	$У С$
$::_{t}$	\hookrightarrow_{t}	$У С$	$У П$
$: \simeq:_{t}$	$\hookrightarrow_{t} \uplus$	$У П$	$У С$
$: \simeq_{t}$	$\hookrightarrow_{t} \uplus$	$У П$	$У П$

Graded modalities $\diamond^{\geqslant n} \mid$ Criteria

Theorem: for pointed models (Maarten de Rijke, 2000)

	Both	\mathbb{K}	\bar{K}
$\mathbb{K} \in \mathbb{U} \mathbb{L}$	$\equiv_{\text {MLG }}$		
$\mathbb{K} \in \mathbb{L}$	$\equiv_{\text {MLG }}$		УП
$\mathbb{K} \in \mathbb{R} \mathbb{L}$	$\equiv_{\text {MLG }}$	УП	
$\mathbb{K} \in \quad \mathbb{L}$	$\equiv_{\text {MLG }}$	УП	УП

	Both	\mathbb{K}	$\overline{\mathbb{K}}$
$\mathbb{K} \in \cup \cup \mathbb{L}$	\simeq_{G}	$У С$	$У С$
$\mathbb{K} \in \quad \cup \mathbb{L}$	\simeq_{G}	$У С$	$У П$
$\mathbb{K} \in \mathbb{L}$	\simeq_{G}	$У П$	$У С$
$\mathbb{K} \in \quad \mathbb{L}$	\simeq_{G}	$У П$	$У П$

Theorem: for models (Maarten de Rijke did not write, check!)

	Both	\mathbb{K}	$\overline{\mathbb{K}}$
$\mathbb{K} \in$ யnL	$\overline{\text { mLG }}^{\text {M }}$	\hookrightarrow	
$\mathbb{K} \in \mathbb{U L}$	\#mLG	\hookrightarrow	уп
$\mathbb{K} \in \cap \mathbb{L}$	\#MLG $^{\text {mid }}$	$\hookrightarrow \uplus У \square$	
$\mathbb{K} \in \quad \mathbb{L}$	\#MLG	$\hookrightarrow \uplus У \square$	уп

Both	\mathbb{K}		$\overline{\mathbb{K}}$
$: \simeq: G$	\hookrightarrow	УС	УС
$: \simeq: G$	\hookrightarrow	УС	УП
$: \simeq: G$	$\hookrightarrow \uplus$	УП	УС
$: \simeq: G$	$\hookrightarrow \uplus$	$У П$	$У П$

Intuitionistic propositional language | Criteria

Theorem: for pointed models (Piet Rodenburg 1986)

	Both	\mathbb{K}	$\overline{\mathbb{K}}$
$\mathbb{K} \in$ שnL			
$\mathbb{K} \in \quad \cup \mathbb{L}$			
$\mathbb{K} \in \mathbb{L}$			
$\mathbb{K} \in \quad \mathbb{L}$			

	Both	\mathbb{K}	$\overline{\mathbb{K}}$
$\mathbb{K} \in \cup \cap \mathbb{L}$			
$\mathbb{K} \in \quad \mathbb{L}$			
$\mathbb{K} \in \mathbb{L} \mathbb{L}$			
$\mathbb{K} \in \quad \mathbb{L}$			

Theorem: for models (Piet Rodenburg 1986)

	Both	\mathbb{K}	$\overline{\mathbb{K}}$
$\mathbb{K} \in \cup \cup \mathbb{L}$			
$\mathbb{K} \in \quad \mathbb{L}$			
$\mathbb{K} \in \mathbb{L} \mathbb{L}$			
$\mathbb{K} \in \quad \mathbb{L}$			

Both	\mathbb{K}		$\overline{\mathbb{K}}$
$: \simeq:$	\hookrightarrow	УС	УС
$: \simeq:$	\hookrightarrow	$У С$	$У П$
$: \simeq:$	$\hookrightarrow \uplus$	$У П$	$У С$
$: \simeq:$	\hookrightarrow	УП	$У П$

Intuitionistic propositional language | Criteria

Theorem: for pointed models

	Both	\mathbb{K}	$\overline{\mathbb{K}}$
$\mathbb{K} \in \mathbb{\cup} \mathbb{L}$			
$\mathbb{K} \in \mathbb{L}$			
$\mathbb{K} \in \mathbb{L} \mathbb{L}$			
$\mathbb{K} \in \quad \mathbb{L}$			

	Both	\mathbb{K}	$\overline{\mathbb{K}}$
$\mathbb{K} \in \cup \mathbb{L} \mathbb{L}$			
$\mathbb{K} \in \quad \mathbb{L}$			
$\mathbb{K} \in \mathbb{L} \mathbb{L}$			
$\mathbb{K} \in \quad \mathbb{L}$			

Theorem: for models (Robert Goldblatt 2005)

	Both	\mathbb{K}	$\overline{\mathbb{K}}$
$\mathbb{K} \in \mathbb{U} \mathbb{L}$			
$\mathbb{K} \in \mathbb{L}$			
$\mathbb{K} \in \mathbb{L} \mathbb{L}$			
$\mathbb{K} \in \mathbb{L}$			

Both	\mathbb{K}	\mathbb{K}
$: \simeq:$	$\hookrightarrow \uplus \mathfrak{p e}$	$\mathfrak{p e}$
$?$		

