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ABSTRACT. Starting with the paper of Baker, Gill and Solovay [BGS 75] in com-
plexity theory, many results have been proved which separate certain relativized
complexity classes or show that they have no complete language. All results of this
kind were, in fact, based on lower bounds for boolean decision trees of a certain type
or for machines with polylogarithmic restrictions on time. The following question
arises: Are these methods of proving “relativized” results universal? In the first part
of the present paper we propose a general framework in which assertions of univer-
sality of this kind may be formulated and proved as convenient criteria. Using these
criteria we obtain, as easy consequences of the known results on boolean decision
trees, some new “relativized” results and new proofs of some known results. In the
second part of the present paper we apply these general criteria to many particular
cases. For example, for many of the complexity classes studied in the literature all
relativizable inclusions between the classes are found.

1. INTRODUCTION

Most theorems in recursion theory are known to be relativizable. This means
that for any language A, a theorem remains true if we take machines supplied with
oracle A as the model of computation. This is not true in complexity theory. In 1975
in the paper [BGS 75], oracles A and B were constructed such that pA # NP4 and
PP = NPZ. This means that although we don’t know which of the two assertions
P = NP and P # NP is true, neither of them is relativizable. After [BGS 75], many
theorems of the following kind were proved (for pairs of relativizable complexity
classes K1, K5): there exist oracles A and B such that K{* # K4' and KP = K2.
Since many interesting complexity classes lie between P and PSPACE, for such
classes one can always take the oracle B constructed in [BGS 75] as the second
oracle because in fact PP = PSPACE? is true for that oracle. In 1989 the first
non-relativizable theorems in complexity theory appeared. The first of them was
the theorem from [LFKN 89]: PH C IP. Earlier, in [FS 88], it was proved that
JA Co-NP# g 1P4.

All known proofs of results having the form 34 K{* # K3' (that is, 34 K* ¢ K3}
or the converse) consist of two parts: the “diagonal” part (constructing the oracle
step by step), which is the same in all proofs, and the specific “combinatorial” part,
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in which it is proved that every step can be made. The first result of the present
paper is the formalization of this statement. The proof of Theorem 1 in Section 3 is
a general formulation of the diagonal part of such proofs. Corollary 1 shows what
combinatorial assertion is to be proved in every specific case.

Theorems of the following form have also appeared in the literature: there exists
an oracle A for which the class K4 has no Karp complete (or Cook complete)
language. The first paper of this kind known to the author is [S 82]. In that paper
it is proved that there exists an oracle A for which the class NP4 N Co-NP# has no
Karp complete language (more precisely, no language complete under polynomial
many-one reductions relative to A), and there exists an oracle A for which the class
R has no Karp complete language.

All we have said about proofs of theorems of the form 3A K{* ¢ K4 is true for
proofs of nonexistence of complete languages in complexity classes. Theorem 2 in
Section 4 provides the diagonal part of such proofs in general form.

Both Theorem 1 and Theorem 2 give the criteria. Theorem 1 is the criterion of
whether

(1.1) VA K C K3,
while Theorem 2 is the criterion of whether
(1.2) VA (K3 has a Karp complete problem for the class K!).

Roughly speaking, the criteria are as follows. Let K be a complexity class. Let us
replace all polynomial restrictions in the definition of the class K by polylogarithmic
ones and replace decision problems (i.e. languages) by separation problems. Denote
by KLOGS the resulting “counterpart” of the class K. Then assertion (1.1) is
equivalent to the absolute inclusion K;LOGS C K,LOGS, and assertion (1.2) is
true iff the class KoLOGS has a language complete for the class K;LOGS. The
analysis of proofs of relativizable assertions of the form (1.1) (for example, BPP C
Y5 NII, from [S 83]) shows that the more natural formulations of such assertions
have the form K;LOGS C K;LOGS.
Similar criteria exist also for theorems of the following two forms:

(1.3) VA ( the class K3 has Cook complete language for the class K{')
and
(1.4) VA (VL, € K{* 3L, € K3' : L, is Cook reducible to Ly),

i.e. “K{! is Cook reducible to K3'”.

These criteria are formulated in Sections 5 and 6.

The new approach to relativizable theorems makes the solving of problems of the
forms (1.1)—(1.4) easier in both the psychological and technical sense. In Sections 7,
8 and 9 we ascertain, for several known classes K1, K> between P and PSPACE to
which the proposed criteria can be applied, which of the two assertions—(1.1) or the
negation of (1.1)—is true or is unknown. We do the same thing also for assertions
of the form (1.2), (1.3) and (1.4). Some new positive and negative results results
of this type are proved (we call positive results of the form (1.1)—(1.4)). Some
problems of this kind remain open.

Acknowledgements. The author is sincerely grateful to O. V. Verbitsky, An. A. Much-Ji
nik, A. A. Razborov, A. Kh. Shen and other participants of the Kolmogorov seminar
in Moscow Lomonosov University and the Complexity seminar in Steklov institute
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2. BASIC DEFINITIONS AND NOTATION

We denote the set of all words over an alphabet A by A*. By B we denote the
set {0,1}.

A separation problem is any function from the set B* into the set {0, 1, *}. The
meaning of this definition is that we have to separate the set {z | F(z) = 1} from
the set {z | F(z) = 0}. Denote by D(F') the set {z € B* | F(x) # x}.

We will identify every language L C B* with its characteristic function, denoted

by the same letter:
1, ifzelL;

L(x):{o, itz ¢ L.

Thus any language can be considered as a separation problem. The length of the
word z is denoted by |z|.

Denote [log, n] by logn and let log(0) be 0. Functions of the form p(logn),
where p is a polynomial, will be called polylogarithms. Expressions poly(n) and
polylog(n) will denote a polynomial and a polylogarithm, respectively.

We shall study complexity classes defined by Turing machines whose running
time is bounded by a polylogarithm of the length of the input. An ordinary Turing
machine in polylogarithmic time can read only a prefix of the input word having
polylogarithmic length. Therefore, we will use the model of Turing machines which
is commonly used when time restrictions are so small. In this model, the input word
is given as an oracle. More precisely, besides the work tape, the machine has an
additional tape called the input tape, on which at the beginning of a computation
the length of the input word z is written!. The machine may at any moment of
a computation ask a question of the form ‘(i) =7, i.e., it can write down on the
input tape the number ¢ < |z| and then receive the ith symbol of z, denoted by
x(i), written on the input tape. The time to write down ¢ is added to the total
time but then the “oracle” supplies immediately z(i). (We could consider another
model in which the machine doesn’t get the length of the input word, and when
it asks ‘z(i) =?" with ¢ > |z| it receives the answer “undefined”; evidently, every
machine working in time #(|z|) can by simulated by a machine of this new type in
time #(ja]) + (log(|z}))°").)

If time restrictions are polynomial, then our model is equivalent to ordinary
Turing machines. By M (z) we will denote the output of M on the input word z.

Our first goal is to give the definition of the polylogarithmic counterpart of
a complexity class. As an example, we first define polylogarithmic counterparts
of three well known classes, P, NP and R, and then give the general definition.
The polylogarithmic counterpart of a complexity class is always a class of sepa-
ration problems. If K denotes a complexity class accepted in the literature, then
the polylogarithmic counterpart of this class is denoted by KLOGS, for example,
PLOGS, NPLOGS and RLOGS.

Thus, let F' be a separation problem. Then by definition F' € PLOGS, if there
exists a deterministic Turing machine M whose computation time is restricted by
a polylogarithm of the size of the input such that M (a) = F(«) for all a« € D(F).

By a polylogarithmic nondeterministic machine we mean any nondeterminis-
tic Turing machine all of whose computations on input « have no more than

LConvention: we assume that natural numbers are represented in binary. Moreover, we identify
natural numbers and binary words: a natural number n is identified with the binary notation of
the number n + 1 without the leading 1.
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polylog(|a|) steps. By definition, FF € NPLOGS if there exists a polylogarith-
mic nondeterministic machine M such that if F(a) = 1, then M accepts «, and if
F(a) =0, then M rejects a.

By a probabilistic polylogarithmic machine we mean any probabilistic Turing
machine M whose computation time on input « is bounded by polylog(|«|) (for all
outcomes of coin tossing). By definition, F' € RLOGS if there exists a polylogarith-
mic probabilistic machine M such that if F(«) = 1, then Prob [M(a) = 1] > 2/3,
and if F(a) =0, then Prob [M(a) = 1] = 0 (if F(a) = *, then this probability can
be arbitrary).

Let us turn to the definition of the notion of polylogarithmic counterpart of a
complexity class. To this end we have to fix a general framework, according to
which most complexity classes between P and PSPACE are defined.

To this end consider the definitions of two particular complexity classes (NP
and BPP) in a convenient form.

2.1 L € NP <= there exists a polynomial time computable function s : B* —
N and a polynomial time predicate P(z,%) such that z € L & 3i < s(z) : P(x,1),

2.2 L € BPP <= there exists a polynomial time computable function s :
B* — N and a polynomial time predicate P(z,%) such that if z € L, then the ratio

|{i < N‘lssiégx)’P(m7i)}| is greater than 2/3 and if z ¢ L, then this ratio is less than

1/32

Let us denote in both definitions by f(z) the sequence of values of the predicate
P(z,1) for i < s(x). Then the membership of z in L is defined in terms of the word
f(x). Any bit of the word f(z) can be computed in time bounded by a polynomial
of |z| given its number. Now we come to the following definition.

Let f be a function from B* into B*, and ¢ : N — N.

Definition 1. A function f is weakly computable in time ¢ if

(1) the function z — |f(z)| is computable in time t(|z|),

(2) the partial binary predicate P(z,i) = (ithbit of the word f(z)) can be com-
puted by a machine M which for all x € B* and all i < |f(z)| works in time
not exceeding ¢(|z|).

Functions that are weakly computable in time poly(n), (polylog(n) and 20
respectively) are called weakly polynomial (weakly polylogarithmic and weakly expo-
nential, respectively) . For example, the function f(z) = 02" is weakly polynomial
(by 0™ we denote the word consisting of n zeros) and the function f(z) = =z is
weakly polylogarithmic.

Both definitions 2.1 and 2.2 have the following form. For a fixed separation
problem F' we declare that a language L is in the class if there exists a weakly
polynomial function f such that L(z) = F(f(x)) for all z € B*. Let POLY(F)
denote the class defined in this way by means of separation problem F'. We say that
a class K is generated by a separation problem F if K = POLY(F). For example,
the class NP is generated by the following separation problem Fyp:

1, if 3 <] ai) =1,
0, otherwise.

Fxp(a) = {

2|M| denotes the cardinality of the set M.
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To generate the class BPP we can take as F' the separation problem

—_

, if #1(a) > %|a|,
, if #1(a) < %|a|,
*, otherwise,

o

Fgpp(a) =

where # (z) denotes the number of ones in the binary word .

It is easy to verify that all the classes P, NP, R, BPP, UP, FewP, ¥, &P, PP,
PSPACE, MA, AM, IP (without private coin tossing) have the form POLY(F) for
some F.

Let us define a partial ordering on the set {0, 1, *} assuming that x < 0, x < 1.
Define LOGS(F) as the class of all separation problems G such that for some weakly
polylogarithmic function f the following is true: Ya € B* G(a) < F(f(a)), and de-
fine LOG(F) to be the class of all the languages in LOGS(F'). The class LOGS(F)
is just called the polylogarithmic counterpart of the class POLY(F'). More precisely,
separation problem F' defines the pair—the class POLY(F) and its polylogarith-
mic counterpart LOGS(F') (as we see later, the class LOGS(F) is not uniquely
determined by the class POLY(F)).

Let us turn out to relativized classes. An oracle is any language. An oracle
machine is a Turing machine having an extra tape called oracle tape; this tape has
a read/write head. That head can write only zeros and ones. To run an oracle
machine on an input we must supply it with an oracle. Let A be an oracle. Then
machine works as usual two tape Turing machine with one exception. If oracle
machine gets into a certain state, then the word u written on oracle tape (starting
from the first cell up to the cell where the head is now) is considered as a question
to the oracle. In this case oracle provides its answer A(u) in the cell viewed by the
head. The time needed for oracle to provide its answer is assumed to be 1.

Let M be an oracle machine and let A be an oracle. Denote by M“(z) the output
produced by M supplied with oracle A on input z, and by ¢34 (x) the running
time necessary to provide this output. Call an oracle machine M polynomial [or
exponential] if there exists a polynomial ¢(n) [a constant ¢] such that ¢4 (z) <
q(|z]) [tara(z) < 2°1714¢] for all # € B* and all A C B*. A function f is called
polynomial [exponential] relative to A, if there exists a polynomial [exponentiall
oracle machine M such that f(z) = M (z) for all z (that is, M* computes f).

Let A be an oracle. We want to relativize the definition of the class POLY(F').
Let us define the notion of the weak computability relative to oracle A. Namely, in
the definition of weak computability we allow machine M to call oracle A and in
item (1) we allow the function |f(x)| to be computable in time ¢(|z|) by a machine
with oracle A.

Definition 2. POLY*(F) is the class of all languages L such that L(z) = F(f(z))
for all € B* for some function f being weakly polynomial relative to A.

3. A CRITERION OF RELATIVIZABLE INCLUSION OF ONE COMPLEXITY
CLASS INTO ANOTHER COMPLEXITY CLASS

The single theorem of this section claims that a polynomial complexity class
K{' is included in a polynomial complexity class K3' for all oracles A if and only
if the (absolute: no oracles) inclusion between their polylog-counterparts holds.
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That theorem is valid for all the classes of the form POLY*(F) provided that the
separation problem F' is nondegenerate in the following sense:

3.1 there exists a weakly polynomial function f : N — B* such that |f(n)| =n
and F(f(n)) # « for all n € N;

3.2 there are two words (denote them zerop and oner) such that F(zeror) =0,
F(onef) = 1.

All the problems defining the complexity classes mentioned above are nondegen-
erate.

Theorem 1. If separation problem F satisfies the condition 3.1 and separation
problem G satisfies the condition 3.2, then the following are equivalent:

3.3 LOGS(F) C LOGS(G),
3.4 F € LOGS(G), and
3.5 POLY#(F) C POLYA(Q) for all A C B*.

If F is a language (i.e., D(F) = B*), then all these conditions are equivalent to the
following condition:

3.6 LOG(F) C LOG(G).

Proof. Obviously, 3.3 implies 3.4. Let us prove that 3.4 implies 3.3. Let F be
in the class LOGS(G), and let g be a weakly polylogarithmic function such that
F(a) < G(g(a)). Let us prove that LOGS(F) C LOGS(G). Let H be in LOGS(F)
and f be a weakly polylogarithmic function such that H(a) < F(f(«)). Then
H(a) < G(g(f(a))) for all & € B*. Tt is easy to see that g(f(«)) is a weakly
polylogarithmic function (the class of weakly polylogarithmic function is closed
under superpositions), therefore, H belongs to LOGS(G).

Evidently, the assertion 3.3 implies the assertion 3.6, and if F' is a language, then
3.6 implies 3.4.

Let us prove that 3.4 implies 3.5. Let f be a weakly polylogarithmic function
such that F(a) < G(f(a)). Assume that A is a subset of B* and L is an element of
POLY*(F), that is, there exists a function g being weakly polynomial relative to A
such that L(z) = F(g(z)). Consequently, L(z) = G(f(g(z))). It is easy to see that
the function f(g(z)) is weakly polynomial relative to A (superposition of a weakly
polylogarithmic function and of a function being weakly polynomial relative to A
is weakly polynomial relative to A). Hence, L belongs to POLY* (@).

Let us prove that if 3.4 is not true, then 3.5 is not true also. Assume that F
is not in LOGS(G). This means that for any separation problem H € LOGS(G)
there exists an o € B* such that F(a) £ H(«). Let us prove that, moreover, for
any separation problem H € LOGS(G) there exist infinitely many a € B* such
that F'(a) € H(a). Assume that it is not true, i.e., there exist a number n and
a weakly polylogarithmic function f such that F(a) < G(f(«)) for all a € B*,
|e| > n. Then the function

fla), iffa] >n,
fila) =< zerog, if|a| <n, F(a) =0,
oneg, otherwise.
is weakly polylogarithmic and F(«) < G(f1(a)) for all a € B*.

Let us fix a function encoding pairs of words by words in the following way.
Assume that z is in B*. Let us double all the bits of 2 and add the word “01”
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to the end of the resulting word. Denote the resulting word by Z (for example,
001 = 00001101). The word Zy will be considered as the code of the pair (z,y).
Obviously, for given £y we can in polynomial time find z and y and for given word
u we can decide in polynomial time whether u has the form Zy. For an oracle A
and n € N, denote by A,, the word of length n, whose ith bit is equal to A(#i).?

We will construct an oracle A such that the language LA = {n | F(4,) = 1}
belongs to the set POLY#(F) \ POLY#(G). The assertion L4 € POLY#(F) will
follow from the following global assertion:

(G) Vn € N F(A,) # *.

If (G) is true, then LA(n) = F(A,) for all n. Since the function h(n) = A, is
weakly polynomial relative to A, the assertion (G) implies that the language L4 is
in POLYA(F).

Let us enumerate all the functions being weakly polynomial relative to oracles.
This means that we enumerate pairs of oracle machines involved in the definition of
polynomial weak computability relative to an oracle. Denote ith function by fZA(ac)
(A is considered as the second argument of the function). Let E be a polynomial-
time decidable language such that F'(E,,) # * for all n € N. Such a language exists
because F' satisfies the condition 3.1. We start with A = E to make the condition
(G) true. Then we make countable number of steps numbered by 1,2,.... On the
ith step we change the value of A on a finite set of words to satisfy the following
local condition

(Li) 3n € N F(4,) #G(f{(n),
being careful not to injure the condition (G).

Then we fiz all the values of A needed to ensure the truth of the assertion (E;)
and also all the values of A that were changed. This is to be understood as follows.
Evidently, there exists a finite set U of words such that for all A’ C B*, if A’
and A have the same values on all the elements of U, then (L;) is true for A’. We
find such a U and “label” all its elements and all the elements on which A’s value
was changed. The values of A on labeled words are called “fixed” and cannot be
changed later. Thus, when we will make w steps, we will obtain an oracle A such
that the condition (G) is true and the condition (L;) is true for all i € N. Evidently,
LA € POLYA(F) \ POLY#(G) for that A.

So we have to describe ith step. Let A be the oracle constructed on (i — 1)th
step (with some fixed values).

Assume that « is in B* and |a| = n. Denote by A[a] the oracle where A, is
replaced by «, that is,

A(u), if u has not the form 71, i < n,

Alel(u) = {

a(i), if u = 7, where i < n.

Set H(a) = G(£{"(|a))).

(3
Since A is polynomial-time decidable (A is obtained from E by finite number
of changes), the function « — fiA [a](|a|) is weakly polylogarithmic, therefore, H €
LOGS(G). Consequently, there exist infinitely many o € B* such that F(a) £
H(a). Hence, there exists an a € B* such that F(a) £ H(«) and no value of A on a

3Recall that we identify natural numbers with binary words.
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word of the form |ai, i < || is fixed. Pick such an a and replace A with A[a]. Now
the assertion (L;) is true for n = |a| because F(A,) = F(a) £ H(a) = G(f(n)).

Fix the values of A ensuring the truth of condition (L;). Note that the asser-
tion (G) is not injured because F(A,) = F(a) and F(a) # * (since F(a) £ H(«)
and * is the least element in the set {0, 1,%}). The implication 3.5=-3.4 is proved.

Remark 1. All the separation problems F' defining complexity classes studied in the
literature have the following property. If in the definition of the class POLY(F)
we add the extra requirement | f(z)| = 2P°¥(2D | (the definition of polynomial weak
computability implies only that |f(z)| < 2P°¥(2D) then the class POLY(F) does
not change. Moreover, all those problems F' have the following property. For a
separation problem F', define the new separation problem

_ F(a), if |a| has the form 2%, k € N
F(a) =

*, otherwise.

Then for all the classes studied in the literature, the corresponding separation
problems F' satisfy the following condition:

(3.7) F € LOGS(F).

Note that (3.7) implies POLY#(F) = POLY“(F) for all A (by Theorem 1).
If a separation problem F' has the property (3.7), then the conditions 3.3, 3.4,
and 3.5 are equivalent to the condition

3.8 EXPA(F) C EXPA(G) for all A,

where EXPA(H) is the class containing all the languages L such that L(z) =
H(g(z)) for some function g weakly exponential relative to A.

Indeed, the implication 3.4=-3.8 is true because if f(«) is a weakly polylog-
arithmic function and g(z) is a function weakly exponential relative to A, then
the function f(g(x)) is weakly exponential relative to A (because polylog(22o(n)) =
poly(20(™) = 20(n)) - Conversely, let us prove the implication 3.8=3.4. Let F have
the property (3.7) and let 3.4 be false. Then FF ¢ LOGS(G). Applying the same
arguments as those in the proof of implication —3.4= —=3.5, we can construct an
oracle A such that the language L4 = {n | F(Azx) = 1} is in EXP4(F)\EXP4(G).

Let us call a mapping A — POLY?(F) the manifold generated by F. In general,
any mapping from the set of all oracles into the set of families of languages will
be called a manifold. For a family F of separation problems, define the manifold
POLY*(F) = Uper POLY*(F). Define LOGS(F) = Upc LOGS(F).

It is easy to see that Theorem 1 can be generalized to families of separation
problems.

Corollary 1. If all the elements of a family F of separation problems have the
property 3.1 and all the elements of a family G of separation problems have the
property 3.2, then the following are equivalent:

3.8 LOGS(F) C LOGS(G)
3.9 POLYA(F) C POLYA(G) for all A.

Any manifold of the form POLYA(]-' ), where F is a family of non-degenerate
separation problems, is called regular and is called strongly regular if F is one-
element. Corollary 1 implies that a regular manifold POLY* (F) defines family F'
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uniquely up to the weak polylogarithmic equivalence, that is,
(VA POLY#(F) = POLY#(G)) <= LOGS(F) = LOGS(G).

This is not true for absolute classes: there exist separation problems F; and F5, such
that POLY(F1) = POLY(F2z) and LOGS(F};) # LOGS(F3). In other words, there
exists a nonrelativizable assertion of the form POLY(F;) = POLY(F,), namely
the assertion IP = PSPACE proven by Shamir in [Sh 90]. Both the classes IP
and PSPACE can be defined in our framework as shown in §7.

Consider the following application of Theorem 1 (it appeared in fact in [BGS
75]). Suppose we wish to prove that there exists an oracle A such that P4 £ NP,
According to Theorem 1, it is enough to prove that Fxp is not in PLOG. In other
words, we have to prove that no machine can in time polylogarithmic of |«| recognize
if one occurs in a. Assume that a polylogarithmic-time machine M recognizes
whether one occurs in a. Run the machine M on the input word containing only
zeros and long enough (its length n should be greater than the running time of M
on words of length n; such an n does exist because n — polylog(n) — +o00). The
output of the machine should be 0. But since M had not queried at least one bit
of a, we can fool it by changing that bit of a to 1.

In this proof we have used only that the number of bits queried by the machine
M working on input « is restricted by a polylogarithm of |a|, and the running
time can be arbitrary large. This is true for all the known proofs of the results of
the form 34 K{* ¢ K3'. Let us formalize this claim. Replace in the Definition 1
the restrictions for time with the restrictions for the number of queried bits of x
and denote by n.u.LOGS(G) the class obtained from the class LOGS(G) after this
replacement. Then to prove that 3A POLYA(F) ¢ POLY*(G) it is sufficient to
prove that F'is not in n.u.LOGS(G) because n.u.LOGS(G) O LOGS(G). Assertions
concerned with the number of queries can be usually proved by counting arguments.

Let us give the formal definition of the class n.u.LOGS(F) using another model
of computation, namely, decision trees.

Let z1,...,z, be boolean variables and let M be a set. An (M, z1,... ,x,)-tree
is a finite binary rooted tree whose leaves are labeled by elements of M, whose
internal vertices are labeled by variables from the set {z1,...,z,}, and for every
internal vertex, one of the two edges going from that vertex to its sons is labeled by
0 and the other is labeled by 1. An (M, z1,...,x,)-tree T computes the function
f:B™ — M defined as follows. Let b; ...b, belong to B. Evidently, there exists a
single path in the tree starting at the root and going to a leaf such that for every
pair (u,v) of consequent vertices in this path if u is labeled by z;, then the edge
(u,v) is labeled by b;. The value f(b; ...by,) is defined as the label of the end leaf
in this path. We will denote the defined function by the same letter as the tree
itself, i.e., T(x1 ... xy,). The complexity of a tree is defined as its height.

A partial function f : B™ — M is computable in t queries if there exists an
(M, z1,...,z,)-tree T of height at most ¢ such that the function T'(xy,... ,z,) ex-
tends the function f(z; ...z,). Replace in Definition 1 the notion of computability
in time t(Jz|) with the notion of computability in ¢(Jz|) queries. The resulting
notion is called the non-uniform weak computability in time t(n).

Definition 3. n.u.LOGS(G) is the class of all the separation problems F such that
F(a) < G(f(a)) for some non-uniform weakly polylogarithmic function f and for
all a € B*.
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Evidently, LOGS(G) C n.u.LOGS(F), and we obtain an easy corollary from
Theorem 1.

Corollary 2. If
(3.11) F ¢ n.u.LOGS(G),

then the negation of 3.5 is true.

It is the assertion (3.11) that is proved by counting arguments in all the known
proofs of theorems of the form

JA POLYA(F) ¢ POLYA(G).

4. THE CRITERION OF RELATIVIZABLE EXISTENCE OF
AN m-COMPLETE LANGUAGE IN A COMPLEXITY CLASS

Denote the polynomial many-one reducibility (Karp reducibility) by <P . Recall
that Ly <P L, if there exists a polynomial-time computable function f such that
x € L1 & f(x) € Ly. If we allow the function f to by computable by a polynomial-
time machine with an oracle A, then the resulting reducibility is denoted by <P:4.
Let < stand for a reducibility on separation problems. We say that a separation
problem H is <-hard for a class K of separation problems if any separation problem
in K is <-reducible to H. If H is <-hard for K and H is in K, then we say that H
is <-complete in K. Call a class K; of separation problems <-hard for a class K,
of separation problems, if K7 has a problem being <-hard for K>.

The following theorem gives a criterion of whether the class POLYA(G) is <24-
hard for the class POLY#(F) for all oracles A. To make its formulation more
natural let us introduce the notion of weak polylogarithmic reducibility, which is
denoted by <! . We say that F' <., G if F € LOGS(G), that is, reducing functions
are the polylogarithmic ones. It is easy to see that the relation <! is reflexive
and transitive and that every separation problem F' is <! -complete in the class
LOGS(F). We say that a separation problem G solves a separation problem F' if
F(z) < G(z) for all z € B*.

Theorem 2. If a separation problem F' satisfies the condition 3.1 and a separation
problem G satisfies the condition 3.2, then the following are equivalent:

4.1 LOG(G) =L -hard for LOGS(F),

4.2 F has a solution in LOG(G),

4.3 the class POLYA(G) is <P*-hard for the class POLYA(F) for any oracle
A.

If F is a language, then all these assertions are equivalent to the assertion:
4.4 the class LOG(G) is <! -hard for the class LOG(F).

Proof. Let us prove the implication 4.1=-4.2. Assume that 4.1 is true, that is, there
exists a separation problem H € LOGS(G) such that any separation problem in
the class LOGS(F) is <!, -reducible to H. Then F <! H. Let g : B* — B* be
a function reducing F' to H. Then the language H(g(«)) solves F' and belongs to
LOG(G).

Let us prove the implication 4.2=4.1. Assume that a language H € LOG(G)
solves F. Then the language H is <! -hard for the class LOGS(F) because the
problem F is <! -complete in LOGS(F).
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Evidently, 4.1 implies 4.4. The implication 4.4=-4.2 in the case when F' is a
language can be proved just as the implication 4.1=>4.2 is proved because F €
LOG(F) in this case.

Let us prove the implication 4.2=-4.3.

Let F' have a solution H € LOG(G). Assume that A C B*. Theorem 1 implies
that POLYA(F) C POLY“(H) C POLY*(G) (note that in the proof of the impli-
cation 3.4=3.5 we did not used conditions 3.1 and 3.2). Therefore, it suffices to
prove that the class POLY (H) is <?"-hard for the class POLY(F). In fact, we
will prove that the class POLY4 (H) has an <P -complete language. Let g{)“, gf,
g5, ... be an enumeration of all the functions being weakly polynomial relative to
A. Set LA (z) = H(g(x)). By definition, POLY#(H) = {L# | i € N}.

Let p;(|]z]) be a polynomial upper bound for the time of weak computation of
the function g/*(x) given iz. We will prove that there exists a function f# weakly
polynomial relative to A such that f4(iz0P:(I2D) = gA(z) for all i € N and for
all x € B* Suppose that we have already proved the existence of such a function
fA. Then let LA(u) = H(f*(u)). By definition, LA € POLY*(H). On the other
hand, L# is <P -complete in the class POLYA(H ) because for all 7 € N the function
x — 1207 (7)) is polynomial-time computable and reduces Lf‘ to LA,

Let us prove the existence of such a function f4. Let M4 be a machine that in
time p;(|z]) computes the length of the word g (z) for any given i#, and let N4
be a machine that in time p;(|z|) computes the jth bit of the word g (z) for any
given iZj. Then the length of the word f4(w) can be computed by the following
machine M4: for given word w check first whether w has the form 0, and if not,
output 0. Otherwise find i, z, and ¢ and run M4 on iZ. If machine M* produces
a result within time ¢, then output that result, otherwise output 0. The following
machine N4 outputs the jth bit of the word f#(w) for any given (w,j): run first
M* on w, let n stand for the result produced by M4. If n = 0, then output 0.
Otherwise find i, 2, and ¢ such that w = iZ0* and run N4 on iZj. If the machine
N4 produces a result within time ¢, then output that result. Otherwise output 0.

Let us prove that if 4.2 is false, then 4.3 is false. Assume that F' has no solutions
in the class LOG(G). Let us construct an oracle A such that the class POLY#(G)
has no <%4-hard language for the class POLYA(F). Let £, fi4, ..., f#, ... be
an enumeration of all the functions being weakly polynomial relative to oracle A
and let mg‘, m’l“, e, m;‘, ... be an enumeration of all the gﬁzf‘—reducing functions
(that is, all the functions of the type B* — B* being polynomial relative to A).
Assume that A C B*. Call the language A* = {x | iz € A} the ith component of A
and denote by L;(A) the language {n | F((A%),) = 1}. Recall that for C C B* C,,
stands for the word of length n, whose jth bit is equal to C'(fij). It’s clear that it
suffices to construct an oracle A such that for all i € N, at least one of the following
two assertions is true:

(L) G(f(y)) = * for some y € B*;
and
(%) the language L;(A) is in POLY*(F) and is not <”4-reducible to the sepa-
ration problem G(f{(y)).
The condition (L}) is local, therefore we denote it by (L}). To make the condition
(%) true it suffices to ensure one global condition

(G;) F((AY),) # * foralln € N
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and the following countable family of local assertions

(L)) Jn € N F((AY)n) # G(f{!(mj (1)), j € N.

Thus we have to construct an oracle A such that for all pairs (i,7) € N? at least
one of the two assertions (L}) and (G;)&(Lj;) is true.

Let us start with the oracle A being a polynomial-time decidable language such
that for all i the assertion (G;) is true. Then we fix an enumeration of the set N2
and make countable number of steps enumerated by pairs (i, ). During the step
(i,7) we redefine the ith component of A on a finite number of words to make the
assertion (L) or the assertion (L3;) true. Evidently, if for some i there exists j
such that we have satisfied the condition (L}) on the step (i, j), then we can skip
the remaining steps (i,j'). On each step we will fix the value of A on some words.

Let us explain what we do during the step number (i, ). Let A be the oracle we
have after the previous step (with a finite set of fixed values). Consider two cases:

1st case: it is possible to change non-fixed values of the ith component of A to
make (L}) true. Evidently, in this case it is enough to redefine only a finite number
of non-fixed values of A? to make (L}) true. Make those changes of A’ and fix a
finite number of values of A to guarantee the truth of (L!). Since A% is not changed
for all i’ # 4, all the assertions (G;/) for all i’ # i remain true.

2nd case: for any changes of non-fixed values of A’ the assertion (L}) remains
false. Assume that o € B*. Let B C B* stand for the oracle such that B’ = A?
for i’ # i and B’ = (4%)[a] (let us remind that the notation C[a] is defined in the
proof Theorem 1). Denote B by Ala,i]. Consider the language

= {a e B |G o)) = 13,
Let us prove that H € LOG(G). Call a € B* free if no value of A on a word of the
form |ali, i < |a], is fixed (that is, we can replace A with A[q, ] without changing
fixed values). Note that the set of non-free values is finite. For all the free o we
have G(fA[a Z]( )) # = for all y € B*. In particular, G(ff[a’l](mfal]ﬂab)) # %

for any free a. The function o — f;* (o] (m;4 *(|a|)) is weakly polylogarithmic
(because A is obtained from a polynomial-time decidable language by changing
finite number of values). Therefore the function

fA[a z]( ; M](|a|)) if o is free,

K3

g(a) = ¢ oneg if o is not free and o € H,
Zerog if @ is not free and o ¢ H,
is weakly polylogarithmic, and H(a) = G(g(a)) for all « € B*. Hence H €

LOG(G).
Thus, there exist infinitely many « such that F'(a) € H(«). Pick a free a such
that F(a) € H(«). Then for n = |a| we have

F((Alei)))n) = F(a) £ H(e) = G(f1 ™ (n).
Replace A with Afw,i] and fix all the values of A which the value of fiA(m;‘ (n))
depends on, and fix the values of A on all the words of the form inj, j < n. Thus we
have made the assertion (L?j) true. And the assertion (G;) was not injured because
F(a) # . Since we have redefined only ith component of A all other assertions of
the form (G;/) were not injured.
The implication 4.3=-4.2 is proved.
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Corollary 3. If F is a language, then the class POLYA(F) has a <P -complete
language.

Remark 2. Tt is clear from the proof of Theorem 2 that in the condition 4.3, we can
replace the <P;4-reducibility by the <P -reducibility.

Remark 3. Tt is clear from the proof of Theorem 2 that for any sequence {(F;, G;)},
i = 0,1,2,... of pairs of separation problems such that F; has no solution in
LOG(G;), we can construct an oracle A such that the class POLY*(G;) is not <#:4-
hard for the class POLY*(F}) for all i. To do so we have to consider for all i the
countable number of components A%/ = {z € B* | ijz € A}, j € N. The same is
true for Theorem 1 and for Theorems 3 and 4 below. We can also construct an oracle
relative to which negative assertions of different types are true simultaneously. For
example, if for all i there exists an oracle 4; such that POLY* (F;) ¢ POLY?i (G;)
and for all j there exists an oracle B; such that the class POLY?/ (H;) is not <hBi_
hard for the class POLY?7(.J;), then there exists a single oracle A relative to which
all these assertions are true.

Corollary 4. If for nondegenerate separation problems F and G the assertion
(4.5) Fhas no solution in the class n.u.LOGS(G),

is true, then there exists an oracle A such that the class POLY?(Q) has no <PAL
hard language for the class POLYA(F).

The assertion (4.5) is the assertion usually proved by counting arguments when
one proves that there exists A such that the class POLY?(G) is not <24-hard for
the class POLY?(F).

Example. In [N 89], it was proved that n.u.BPPLOG = n.u.PLOG. Obviously,
the separation problem Fy defining the class R has no solution in the class n.u.PLOG.Jj
Consequently, there exists an oracle A such that the class BPP“ has no <PA_hard
language for the class R4

Remark 4. If we replace in the statement of Theorem 2 the separation problems F
and G by countable classes F and G of separation problems then the implication
4.3=4.1 remains true. To keep the implication 4.1=-4.3 true, we have to strengthen
the condition 4.1 as follows. Replace the condition 4.1 by the following condition:
“there exist a language H in LOG(G) and a computable function f(i, ) such that
for any fixed i the function o — f (i, a) is weakly polylogarithmic and reduces the
1th separation problem in F to H”.

5. A CRITERION OF WHETHER A COMPLEXITY CLASS IS
TURING REDUCIBLE TO ANOTHER COMPLEXITY CLASS

Denote by <%. the polynomial Turing reducibility (Cook reducibility) and denote
by g’;:“‘ the polynomial Turing reducibility relative to oracle A. Recall that L, SIT’JA
L, if there exists a polynomial-time Turing machine M having two oracles A and Lo
and recognizing L;.

Let < stand for some type of reducibility. Let us call a class K; to be <-reducible
to a class Ko (notation: K; < K») if VL, € Ky Ly € Ky Ly < Lo.
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To formulate a theorem giving a criterion of whether K S%A K, for all oracles A
we define the polylogarithmic version of polynomial-time Turing reducibility, which
is more flexible compared with the polylogarithmic many-one reducibility.

A separation problem F' is weakly polylogarithmic T-reducible to a separation
problem G (F <% G in symbols) if there exist a polynomial-time Turing oracle
machine M and a function f : B* x B* — B* such that 1) the value f(y,«a) can
be weakly computed in time poly(|y| + log|a|) for given y and a and 2) for all
a € D(F) the following two assertions are true:

(5.1) G(f(y,a)) #  for all y € B*,
(5.2) F(a) = MU0 (|al),

where G(f(-,a)) stands for the language {y € B* | G(f(y,a)) = 1}.

We call a pair (M, f) a pair reducing F to H if the conditions (5.1) and (5.2)
are true for all @ € D(F'). Note that if there exists a pair (M, f) such that the
conditions (5.1) and (5.2) are true for all but finitely many « € D(F'), then F <%, G.
We denote by (M, f)“(a) the output of M on input |a| with oracle G(f(-,@)).

Obviously, the binary relation <% is reflexive and transitive. It is clear that
F=<l G=F=<LG.

Theorem 3. If a separation problem F' satisfies the condition 3.1 and a separation
problem G satisfies the condition 3.2, then the following are equivalent:

5.3 LOGS(F) =L LOGS(G),

54 F =L G,

5.5 POLYA(F) <2* POLYA(G) for all oracles A.
If F is a language, then all three assertions are equivalent to the assertion

5.6 LOG(F) <4 LOG(G).

Proof. Evidently, the conditions 5.3 and 5.4 are equivalent.

Assume that F' is a language. Then the implication 5.6=5.4 is true. On the
other hand, assume that 5.6 is true, that is, F' <L, G. Let (M, f) be a pair reducing
F to G. Let I(n) be a polylogarithmic upper bound for the length of queries to
oracle made by M on the input n € N. Consider the language H = {Za | |z| <
I(|a|),G(f(z,a)) = 1}. Let us prove that H belongs to LOG(G). Since D(F) = B*,
we have G(f(z,®)) # * for all z,« € B*. Therefore, H(8) = G(h(3)), where

flz,0) if B =za,z <I(|a]);
zerog  if B has not the form Za, where z <I(]a]).

o) = {

For a given § we can decide in time polylog(|3|) if 8 has the form Za, |z| < I(|a]).
Consequently, h is a weakly polylogarithmic function, hence, we have H € LOG(G).

Set g(z,a) = Za. Obviously, g(z, ) can be weakly computed in time poly(|z| +
log|a|). The pair (M, g) reduces F to H, therefore {F} <L LOG(G). As F is
<L -complete in LOG(F), we obtain LOG(F) <% LOG(G).

Let us prove that 5.4 implies 5.5. Assume that F' <. G. Denote by (M, f) a pair
reducing F to G. Let A be an oracle and let L a language in the class POLY*(F).
Let g be a weakly polynomial relative to A function such that L(z) = F(g(x)). Then
L(z) = MG 9@ (|g(x)]) for all z € B*. Since the function |g(z)| is polynomial-
time computable relative to A, the language L is S%A—reducible to the language
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{7g(x) | G(f(y,g(x))) = 1}, which is in POLY*(G) because G(f(y, g(x))) # * for
all z,y € B* and the function gz — f(y, g(z)) is weakly polynomial relative to A.

Let us prove the implication —~5.4= —=5.5. Assume that F AL G. Let us prove
that 5.5 is false. Note that in the assertion 5.5 the g’}’A—reducibility can be replaced
by the <!.-reducibility. Indeed, if a language L, is S%A—reducible to a language L
in POLY?(G), then L; is <%-reducible to the language L&A = {0z | € L}U{1z |
x € A}, which is in POLY#(G) (because A € POLY#(G) provided G satisfies the
condition 3.2 and the class POLY*(G) is closed under the operation @ for any A
and G).

It suffices to construct an oracle A such that the following two conditions are
true:

(G) A, € D(F) for all n,

and
(L) the language {n | F(A,) = 1} is not <% -reducible to any language in
POLYA(G).
Let ME, ME, ..., MJB, ... be an enumeration of all the polynomial-time oracle

Turing machines. Let f{*(z), f5'(z), ..., ff(), ... be an enumeration of all the
weakly polynomial relative to A functions. We want to construct an oracle A such
that the following assertion (L;;) is true for all ¢,j € N:
3 G(f() A —
(Lij) 3n € N F(Ap) # M; (n) V Jy G(f{(y)) = *
At first, let A be equal to a polynomial-time decidable language satisfying the
condition (G). Make w steps enumerated by pairs (i,5) € N2.

Step (i,7). Let A be the oracle (fix values included) we have after the previous
step. Call @ € B* free if no value of A on a word of the form |a|k, k < |a] is fixed.
Consider two cases.

1st case: there exist free a € D(F) and y € B* such that F(a) # * and
G(fiA[a] (y)) = *. Then replace A by A[a] and fix finite number of values of A to
guarantee the validity of the assertion (L;;). Note that the condition (G) has not
been injured.

2nd case: G(fiA[a] (y)) # * for all y € B* for all free « € D(F'). Let us prove
Alal
that there exists a free « € D(F) such that F(a) # MjG(f" ())(|a|). Indeed,

Alel |
otherwise F(«a) = M].G(fi ())(|a|) for all @ € D(F). Then the function g(y,a) =
f;‘[a] (y) is weakly computable in time poly(|y| + log|a|) and for the pair (M, g)
the conditions (5.1) and (5.2) are fulfilled for all the free & € D(F). Therefore,
F <% G and we get a contradiction. After that the proof goes similar to the proof

of Theorem 1.

6. THE CRITERION OF WHETHER A COMPLEXITY CLASS HAS
TURING HARD LANGUAGE FOR ANOTHER COMPLEXITY CLASS

Theorem 4. If a separation problem F' satisfies the condition 3.1 and a separation
problem G satisfies the condition 3.2, then the following are equivalent:

6.1 the class LOG(Q) is =!.-hard for the class LOGS(F),
6.2 the class LOG(G) has a language which F is <L.-reducible to,
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6.3 the class POLY?(Q) is S%A-hard for the class POLYA(F) for all oracles
A.

If F is a language, then all the three assertions are equivalent to the assertion
6.4 LOG(G) is =t.-hard for LOG(F).

Proof. Evidently, the assertions 6.1 and 6.2 are equivalent and if F' is a language,
then they both are equivalent to the assertion 6.4.

Let us prove the implication 6.2=-6.3. Assume that F <}, H € LOG(G). If H
does not satisfy the condition 3.2, then F' € PLOG and therefore the assertion 6.3 is
true. Otherwise, Theorem 2 implies that for any oracle A the class POLY* (H) has
a <P -complete language. Theorem 3 implies that POLY4(F) g’;“ POLY*(H),
consequently, the class POLY*(G) is S%’A—hard for the class POLY*(F).

Let us prove that the assertion 6.3 implies the assertion 6.2. Similar to Theo-
rem 4, we can replace S%’A—reducibility by the </.-reducibility in 6.3.

Assume that 6.2 is false, that is, F' is <{-reducible to no language in the class
LOG(G).

We construct an oracle A such that the class POLY* (@) has no language being
<’-hard for the class POLY* (F). Let fi'(y), fi*(y), - .., fA(y), ... be an enumer-
ation of all the weakly polynomial relative to A functions. Split A into components
A" = {z | iz € A}. Tt suffices to define A in such a way that for any i € N at least
one of the following two assertions holds:

(L}) G(fA(y) = * for some y € B,
and

() the language L;(A) = {n | F(A%) =1} is in the class POLY?(F) and is not
<P-reducible to the separation problem G(f#(y)).
Let Mg, M, ..., M}, ... be an enumeration of all the polynomial-time oracle
Turing machines.

To make the assertion (x) true it suffices to satisfy the following requirement
(Gi):

(G;) F(AL) # « for all n,
and at the same time to satisfy the following condition (L7;) for all j € N:

(L) Fn € N F(AL) # MEVT O (),
To construct an oracle A satisfying (L}) or (G;)&(L3;) for all pairs (i,7) we can
follow the proof of Theorem 2. The only difference appears in the second case
when the step (i, j) is described. Recall that in the second case G(f{(y)) # * for
all y € B* and for all variations of non-fixed values of A*. We call a word o € B*
free if no value of A’ on a word of the form mj, Jj <al, is fixed. We have to prove

Ala,i]
that there exists a free @ € D(F) such that F(a) # M]-G(fi ())(|a|). Assume
that there exists no such a. Denote by I(n) a polylogarithmic upper bound for the
length of queries made by the machine M on input n. Consider the language

H = {ga : ly| <U(la]), G(f1* (y) = 1}

and the function g(y,®) = ga. Since G(fiA{a’i] (y)) # = for all free o and for all
y € B*, the language H is in LOG(G). Then for the pair (M, g) assertions (5.1)
and (5.2) are true for all free « € B*. Therefore, F <} H. This contradiction
finishes the proof.
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Corollary 5. If F £% n.u.LOG(G), then there ezists an oracle A such that the
class POLYA(G) is not §’%’A—hard for the class POLYA(F).

Remark 5. Let K7, Ky be classes of languages and let A be an oracle. In the paper
[A-S 86] it, is noted that if the class K> is downward closed under <B:*-reductions,
then the class K5 is S%A—hard for a class K, if and only if K, is <P -hard for
K. Indeed, suppose that L is a language in K5 which all the languages in K; are
S%A—reducible to. Then consider the language

Ly = {iz0" | MiA’L on input x outputs 1 in <t steps},

where My, My, ... is a numeration of polynomial-time Turing machines having two
oracles. All the languages in the class K; are <P -reducible to L;. On the other
hand, L, <%* L, hence, L, € K, holds.

7. RELATIVIZABLE INCLUSIONS BETWEEN PARTICULAR COMPLEXITY CLASSES

In this section we consider many of the regular manifolds lying between P4 and
PSPACE# (the only exception is the manifold Few?; the author does not know
whether this manifold is regular). As it was mentioned in Corollary 1, all the
particular complexity classes studied in the literature can be generated by means
of separation problems which are not equal to * only on the words of length 27,
n € N. To simplify the notation, we consider in the sequel only separation problems
satisfying this requirement. Denote B2" by F,, and UZO F,, by F. We enumerate
the bits of a word a € F,, by binary words of length n rather than by the numbers
from 1 to 2™. For a word « in F by ||a|| we mean log, |a|. We call ||a|| the norm of
«. While defining particular separation problems we keep the following agreement:
if the problem under consideration is defined only on a set M C B*, then its value
on all the words from B* \ M is equal to * (that is, the default value is *).

Consider the following relativized complexity classes: UP4, Co-UP4, UP* N
Co-UPA, FewP*, Co-FewP”, FewP” N Co-FewP”, Few”, ®P*, R*, Co-R*, R N
Co-R*, NP4, Co-NPA, NP N Co-NP#, BPP#, MA”, Co-MA*, MA* N Co-MA“,
AM#, Co-AM# | AM# N Co-AMA, PPA, £4, T, T N2 (k > 2), IPA, Co-TPA,
IP“ N Co-IP#, PH#, PSPACE“.

Below we remind the definitions of some complexity classes from this list and
give some comments.

1. UP# is the manifold generated by the following separation problem:

[y

) if #1(0{) = 1,
FUp(a) = 0, if #1(0[) = 0,
*, otherwise.

2. FewP? = POLY#(F), where F consists of all the separation problems F

such that .
1, if 0 < #i(a) <p(lal),

F(a) = 07 if #l(a) = 07

%, otherwise,

where p is a polynomial.
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3. Few” is the class defined in the paper [CH 90] as follows:
a language L is in the class Few if there exist a function f4 being weakly polyno-
mial relative to A, a polynomial ¢ and a predicate R4 defined on the set B* x N
being polynomial-time computable relative to A, such that L(z) = R (x, #1 f4(z))
and #, (fA(x)) < q(|z]) for all z € B*. It is unknown if the manifold Few” is reg-
ular.

4. P4 = POLY#(PARITY), where
0, if #1(«) is even,

PARITY (a) =
() {1, otherwise.

5. AM? is the abbreviation for the class AM[2]4. The class AM# is generated
by the following separation problem Fan. Let Mgz € M.P(z) mean that |{z €
M : P(z)}| > d-|M|. Then for a € Fa,,

1, if My 3u € B" Jv € B" a(uv) =1,
Fam(a) = ¢ 0, if My/3u € B" Vv € B" a(uv) = 0,
x, otherwise,
where uwv stands for the concatenation of words u and v. Denote the class LOGS(Fam )l
by AMLOGS.

6. MA“ is the class generated by the separation problem

1, if Ju e B™ My/3v € B" a(uv) =1,
Fam(a) = ¢ 0, if Yu € B" My/3v € B" a(uv) = 0,
%, otherwise,

where a € Fs,,.
7. Let us prove that the manifold PSPACE” has the form POLY*(F).
It is well known that any language L in PSPACE# can be represented as follows:

L={z|3y eB" Vy, € B"---Qyu,, € B”PA(;r,ylyg -+-yn), where n = p(|z|)},

where PA(ac,u) is a predicate being polynomial-time computable relative to A
and p(m) is a polynomial.
The converse is true, too. Therefore, we can take the separation problem
1, if there exists n € N such that ||a|| = n? and

Fpspace(a) = Jy €eB"Vy, €B”---Quy € B" a(y1y2---yn) =1
0, otherwise.

It is clear that POLYA(FPSPACE) = PSPACE* and LOG(Fpspack) is the class of
languages that can be recognized within polylogarithmic space.
8. Let us prove that the manifold TP# can be represented in the form POLY*(F).

Take the following separation problem Fip: on words a € F of length 227" it is
defined as follows

1, if3P:B* - B"
Prob [a(rire -1y P(r1)P(rire) -+ P(rira - - 1p)) = 1] > 2/3,

Fip(a) ={ 0, if¥P:B* s B"
Prob [a(riry - - -1y P(r1)P(rire) - P(rira - - -1p)) = 1] < 1/3,

otherwise,
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(where the probability is considered with respect to the uniform distribution in
T Ty).

Then POLY#(Fip) = IPA.

To explain the intuitive meaning of the definition of Fip, let us remind the
definition of the class IP“ according to [B 85] and convert it to a convenient form.
By a Verifier we mean a pair V = (¢, Q), where @ is a polynomial-time computable
predicate on B* x B* x B* and ¢ : N — N is a polynomial. Any function P : B* —

B* is called a Prover. Assume that x € B*, |z| = m. For a sequence r1,...,7(m)
of g(m) words of length ¢(m), define the answer of (P, V) on the input x and
random inputs vy, ... ,Tq(m) as follows. For all i < g(m) set

pi = P(ri--r).

We say that the answer of (P, V') on input x and random inputs rq, ... ,74(m) is equal
to 1if lengths of all the words p; are equal to g(m) and Q(z,71 - 74(m), P1 - - Pg(m)) =}
1; otherwise answer is equal to 0. Denote the answer of (P, V') on input z and ran-
dom inputs r1,... ,7¢(m) by (P, V)(2)r ., We say that a language L belongs
to IP, if there exists a Verifier V' such that the following two assertions are true:

Vz € L 3P Prob [(P,V)(z)
Vo & L VP Prob [(P,V)(x)

=1]>2/3
=0] > 2/3,

71 Te(l=|)

T1Tg(|=])

where the probability is considered with respect to the uniform distribution in
T1e Tq(lz])-

,gf we allow Verifier to query the oracle A, then the resulting class is denoted by
P~

The alternative definition of the class IP with private coins (see, for example
[GMR 85, GMR 89] does not fit into our framework. However, as proven in [GS 86],
these two definitions are equivalent and the proof of the equivalence is relativizable.

A language L is in LOG(F1p) if there exists a polylogarithmic-time Verifier for
which the above assertion holds. Let us denote the class LOG(Fip) by IPLOG.

9. On classes of the form Co-K 4 and K4NCo-K 4. Note that if the manifold K
is [strongly] regular, then the manifold Co-K4 = {B*\ L | L € K4} is [strongly]
regular. If K{', K3 are strongly regular, say K/ = POLYA(F;), i = 1,2, then
the manifold K{* N K3' is strongly regular. Indeed, take the following separation
problem F':

1, if a = Walag,where F1(Oé1) = FQ(OCQ)
F(a) =¢ 0, if a=]|a;|ajas, where Fy (o)) = Fyas)

%, if a has not such form.

)

1
0,

Obviously this separation problem F' satisfies the following equations: LOG(F') =
LOG(F,)NLOG(F), LOGS(F) = LOGS(F, )NLOGS(F,), EXPA(F) = EXPA(F)nf]
EXPA(F).

All the known inclusions between the manifolds under consideration are shown at
Figure 1 (a manifold K{* is included in a manifold K3' if K{* C K34 for all A). That
is, all the known relativizable inclusions between the classes under consideration
are shown at Figure 1. A line segment connects a class K{' with a class K3 if the
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FIGURE 1. Relativizable inclusions between complexity classes.
class K{! is included in the class K3', and the class K3' is positioned higher than
the class K{'.

7.1 Historical references. The nontrivial inclusions on the Figure 1 were proved
by the following authors.

7.1.1. The assertion MA? C £4 N 11§ follows from Gécs’ result (published in [S
83]) stating that BPP4 C £4 N1I4. Namely, in [S 83] a separation problem G/(c)
is constructed such that G(«) is a solution of Fgpp and

(7.1) Gla) =1 <= vy e BPUD 35 ¢ BPUleD (a, y, 2)
where p is a polynomial and @ is a polylogarithmic predicate (that is, G € I, LOG).
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7.1.2. The assertion AM# C T4 follows from the cited Gécs’ result. However,
for this assertion, it is important that in (7.1) the predicate Q(«,y, z) is monotone
in « (that is, if @' can by obtained from « be replacing some zeros by ones, then
Qe,y,2) = Q(a',y,2)).

7.1.3. The assertion MA4 C AM* was proved in [B 85].

7.1.4. Few? C ®P4 was proved in [CH 90].

7.1.5. The assertion MA* C PP* can be proved rather easily. Besides that,
it easily follows from the assertion PPBYY = PP proven in [KSTT 89]. Indeed,
MA C NPBFP C ppBFPP — pp.

7.1.6. The assertion Few” C 24 N TI4' follows from the assertion VA Few <%,
NPA, the latter assertion is easy and well known. For the sake of completeness, let
us prove it here.

As noted, it suffices to prove that VA Few” SZF}’A NP4, Fix A C B*. Assume
that L € Few” and that L is defined by the polynomials p, ¢ and polynomial-time
predicates R4, Q4, that is,

L(z) = R*(z, |{y € B"I"V | Q*(z,y)}
[{y € BY*D | Q4 (2, 9)}| < a(lz]).

Let us prove that having an NP4-complete language as oracle, we can compute in
polynomial time for any given z the cardinality of the set {y € BP(#D . Q4(z,y)}.
The procedure is as follows. For a given , check first if there exists a set M C B»(z])
of cardinality exactly ¢(|z|) such that Vy € M, Q”(z,y). This can be done by
querying the NP“-complete language (since |M]| is polynomial bounded). If such
a set M exists, then |{y € BrlzD | QA(x,y)}| = q(|z]). If not, then check if there
exists a set M C BPUZD of cardinality exactly ¢(|z|) — 1 such that Yy € M Q(z,y).
Repeat this procedure ¢(|z|) times.

7.1.7. The assertion Few? C PP“ was proved in the paper [KSTT 89].

),

7.2 Is Figure 1 complete? We claim that it is the case, that is, all true relativiz-
able inclusions are shown at Figure 1. It follows from the twelve assertions listed
below. Namely, all the assertions 3A K{* ¢ K4 such that

K £ K> and VK{(K{ <K > K{ < KQ), VKé (K2 < Ké = K; < Ké)

are listed, where K; < K> means that there exists a directed path from the class
K, to the class K5 in the directed graph shown at Figure 1.

1. 34 UP4 N Co-UP# ¢ BPP# 7. 3A AM? N Co-AM# ¢ PP4
2. 34 RN Co-RA ¢ P4 8. 34 AMA ¢ %4

3. 34 Co-UPA ¢ aIP4 9. 34 PPA ¢ PHA

4. 3A FewP? N Co-FewP# ¢ UP4 10. 34 P4 ¢ PHA

5. 34 Co-R* ¢ NP4 11. 34 P4 ¢ PPA

6. 34 IP* N Co-IP* ¢ PH 12. JATL ¢ 2 for k>3

7.3 Proving the completeness of Figure 1. We give the proofs of all the
assertions in the above list whose proofs do not require a lot of space and give
references for all other assertions.

7.3.1 Assertion 3A UP” N Co-UP# ¢ BPP#,



22 NIKOLAI K. VERESHCHAGIN

Theorem 5. 34 UP“ N Co-UP# ¢ BPP#

Proof. Let us fix a convenient terminology (being used in other proofs, too). All
the specific separation problems G used in the sequel satisfy the following property:

for all F' € LOGS(G) there exists a weakly polylogarithmic function f such
that F(a) < G(f(«)) and ||f(a)|| depends only on ||a| being equal to a
polynomial p(||a]]).

Assume that F € LOGS(G) and let f be a weakly polylogarithmic function
such that F(a) = G(f(«)) and ||f(a)|| = p(||lal|) for all a € D(F), where p is
a polynomial. Then all the words r being elements of the set BPUI*l) are called
experts (for f and ||a|), and the rth bit of f(«) is called the opinion of r about a.
Let us fix a polylogarithmic machine M that computes the rth bit of the word f(«)
for a given o and r € BPUl?ID, We say that expert r queries a(u) (where u € Bllell),
if M queries the uth bit of a during the work on the input (a,r). It is clear that
for all @ and all » € BPU2l) there exists at most poly(||a|]) v € Bll®l such that
r queries a(u). Call the fraction |{r € BrUel) | » queries a(u)}|bigm/2p(“°‘”) the
weight of u relative to a. Denote the weight of u relative to a by wq (u). If M and p
are not determined by the context we say “the weight of u relative to a for M, p”.
It is easy to prove the following general fact: ), gia) Wa(u) < q(||af]), where g is
the polynomial restricting the number of queries of every expert r € B2l

Now let us start with the proof of Theorem 5. By Theorem 1, it suffices to prove
that the separation problem

Fla) =10, ifa=38y,[IBll = #:(8) =0,

*, otherwise.

does not belong to BPPLOGS (evidently, POLY(F) = UP* n Co-UP4).
Assume the contrary: suppose there exist a polynomial p and a polylogarithmic
predicate P such that Vn V3,vy € F,,

1, #1(y) = 0= My3r € BP™P(By,r) =1
#1(8) =0, #1(y) =1 = My3r € BP™P(By,1) =0

Let us fix a value of n. Let By € F,, 70 € F, be the words containing only
zeros. Without loss of generality we may assume that the fraction |{r e Br(n |
P(Boyo,r) = 1}|/2p(”) is greater than or equal to 1/2. We shall enumerate bits
in the first half 8 of the word 87y (where 8,7 € F,,) by the words of the form Qu,
u € B™, and bits of the second half v by the words of the form lu. (We follow this
rule in the sequel, too.)

Let the number of queries of experts to 89y be restricted by k = poly(n).

Then ), cgn W5y, (1u) < k, therefore, there exists ug € B™ such that wg,, (1uo)
2% < & (if n is large enough). Denote by 7 the word whose ugth bit is 1
and other bits are equal to 0. Replace the word By by the word [yy;. After
this replacement at most 1/6 experts change their opinions, hence, the fraction
|{r € B? | P(Byyi,r) = 1}|/2p(”) is greater than 1/3. As F(8oy1) = 0, we get
the contradiction.

7.3.2 Assertion 3A R* N Co-R* ¢ &P,

|
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Theorem 6. 34 R* N Co-R* ¢ &P

Proof. Evidently, the manifold R* N Co-R* can be generated by the following
separation problem F. If v € Fy, then F(y) = x. If v € Fj,11, denote by « the
first half of v and by 8 the second half of . Then

07 lf#l(a):07 #1(6)Z%|B|7

F(fY) = 17 lf #1(0[) Z %|Oé|, #1(6) = 07
x, otherwise.

By the Theorem 1, it suffices to prove that F' A/ PARITY. Assume the contrary:
suppose there exist a polynomial p and polylogarithmic predicate P such that

VnVy €Fpp F(y) < > P(y,r) =1
reBrt)

The signs > and + in this proof denote the addition modulo 2.

Let us fix a polylogarithmic machine M computing the predicate P and a suffi-
ciently large n. Let the number of queries to the word v made by M on inputs of
the form (v,r), r € B?(") | be bounded by k = poly(n). Let us prove that for any
fixed r € BP(™ the function P(y,r) is a polynomial of degree < k (in the field of
residues modulo 2) of variables v(v), v € B™. Indeed,

k
P(y,r)=Y" H(W(U(bl +bio1,7)) +b; + 1),

where the sum ranges over all the tuples (by,...,b;) € B* such that M out-
puts 1 if it receives the answers by, ... ,b; to the queries made to -y, and where
v(by --+b;,r) € B™ ! is the number of bit in v queried by M if it receives the
answers by, ... ,b; for the previous queries to ~.

Therefore, the function ) g, P(7,7) is a polynomial of degree at most k of
variables v(v). Denote this polynomial by @. Divide the variables v(v), v € B"*!
into two groups a(u), u € B™ and f(u), u € B", where a(u) = vy(0u) and B(u) =
v (1u).

Consider two cases.

1st case: the constant term in @ is equal to zero. Set S(u) = 0 for all u € B"
and set @(0™) = 0. Denote the resulting polynomial of degree at most k& = poly(n)
by R. The polynomial R has 2™ — 1 variables, has zero constant term and is equal
to 1, if at least 27~! variables are equal to 1. Let us derive a contradiction from
the existence of such a polynomial. Consider the set A consisting of all the 27~!-

dimensional boolean vectors having exactly 2" ! ones. The cardinality of the set
on

2’".

known criterion of whether (7}') is odd.

A is equal to ( :11) Let us prove that this number is odd. We shall use a well

Lemma 1. (7) is odd iff any bit of the binary representation of the number m is
greater than or equal to the corresponding bit of the number I.

Proof. Let i = m —1. Then (7]) = (i;ll!)!. For an integer k, denote by t(k) the
greatest integer j such that 2/ divides k. Obviously, t(j!) = [1] + [%] + ...

2
Therefore

(- (55D (395 ED--
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Each term in this sum is nonnegative and [’;l] — [2L] — [2L] = 0 iff 4 mod 2° +
I mod 2° < 2°. Thus ('?) is odd if i mod 2° + [ mod 2% < 2¢ for all s. This means

that the sth bit of 7 or the s-bit of [ is equal to zero for all s.

By this lemma, the number (;::11) is odd. For any @ € A, R(a) = 1, there-
fore, 3,4 R(a) = 1. Consider an arbitrary monomial 7' in R. Let us prove
Y acaT(a) = 0 to get a contradiction. Let T be equal to a(u1)---a(u;), where
i < kanduy, ..., u; are different. Since R has no constant term, we havei > 1. Let
us prove that the number @ € A such that a(u;) = 1for all j < ¢, is even. Obviously,
this number is equal to (22::11:’1) (we assume that i < 2"~ !; since i < k = poly(n),
this is true if n is large enough). Let s be the number of the lowest bit of the binary
representation of i being equal to 1. Then the sth bit of the number 2" — 1 — i is
equal to 0, and the sth bit of the number 2"~! — is equal to 1. Lemma 1 implies
that the number (2|~

We have to consider also the second case (the constant term in @ is equal to 1).
But this case can be reduced to the first case by adding 1 to Q.

7.3.3 Assertion VA Co-UP# ¢ TP“. This assertion was in fact proved in [FS 88]
(technically speaking, a slightly weaker assertion A Co-NP# gz IP# was proved in
that paper). As the proof is very simple, we present it.

Theorem 7 (Fortnow, Sipser). 3A Co-UP#4 ¢ IP4,
Proof. By Theorem 1, it suffices to prove that the separation problem
]., if #1 (Oé) = 0,

Fooup(a) =4 0, if #1(a) =1,
*, otherwise.

) is even.

is not in IPLOG.
Assume the contrary: suppose there exists a polylogarithmic-time Verifier V
such that

#1(a) = 0= 3P Prob [(P,V)(a) = 1] > 2/3,
#1(a) =1 = VP Prob [(P,V)(a) = 1] < 1/3,

where (P, V')(a) stands the answer output by V' after the dialogue with P on input
a.

Take a large n and set ag = 0>°. Then there exists a Prover P such that
Prob [(P,V)(ap) = 1] > 2/3.

Consider the dialogue of P and V on input ag. This dialogue depends on
the outcome of coin tossing made by Verifier. Let us call different outcomes of
coin tossing ezperts and let us call the queries to oy made by the Verifier dur-
ing the dialogue with the Prover P on input ag and outcome r of coin tossing
the queries of the expert r to a. For a given u € B™ call the fraction |{r €

B?(™ | makes the query ‘ag(u) :?’}‘/QP(”) the weight of u. Obviously, if n is
large enough, then there exists u having weight less than 1/3. Change the uth bit
in ap; denote the resulting word by a;. Since Prob [(P,V)(ag) = 1] > 2/3, we ob-
tain Prob [(P,V)(a1) = 1] > 2/3 —1/3 = 1/3. On the other hand, this probability
should be less than 1/3. Contradiction.
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7.3.4 Assertion 3A FewP“NCo-FewP? ¢ UPA. We will prove in the next section
the following stronger statement: 34 FewP“ N Co-FewP# g’;“ UPA.

7.3.5 Assertion 5. 3A Co-R* ¢ NP4,
Theorem 8. 34 Co-R* ¢ NP4,

Proof. Assume the contrary: suppose there exist a polynomial p and a polyloga-
rithmic time predicate P(a,r) such that Va € F,

#1(a) =0=Ir e BV P(a,r) =1
#1(a) > 2/3|a| = Vr e B p(a,r) = 0.

Let us find o such that #;(a) > (2/3)|a| and Ir € Br('""h P(a,r) = 1. Take
ay = 02n, where n is large enough. Then there exists ro € B?(™ such that P(ag,ro).
Change the value of ag on all u such that the polylogarithmic machine computing
P(ap,ro) does not query ‘ag(u) =?’. The resulting word « satisfies the desired
conditions.

7.3.6 Assertion 34 IP* N Co-IP* ¢ PHA. In the paper [AGH 86] it was proved
that 34 TIP* ¢ PH”. Minor changes in that proof allows us to prove that there
exists an oracle A such that IP4 N Co-IP* ¢ PHA.

7.3.7 Assertion A AM? N Co-AM# ¢ PPA. This assertion is proved in the
paper [V 92].

7.3.8 Assertion 34 AM* ¢ ¥4'. This assertion is proved in the paper [Sa 89].

7.3.9 Assertion 3A PP# ¢ PHA. This assertion follows from the fact that there
exists no k € N such that the function MAJORITY (24, ... ,x,) can be represented
in the following form

2polylog(n) 2polylog(n) 2polylog(n) 2polylog(n)

\/ /\ \/ /\ fil---iZk(wlﬂ"' ,CEn),

i1=1 io=1 iop—1=1 iop=1

where f;, . (®1,...,xy,) is a variable or the negation of a variable ([FSS 84], [A
83], [Y 85], [H 86]).

7.3.10 Assertion 3A @ P4 z PH#. This assertion is proved in the papers [FSS
84], [A 83], [Y 85], [H 86].

7.3.11 Assertion IA @& P4 ¢ PPA. This assertion is proved in [BG 81]. In fact,
this theorem easily follows from the assertion PARITY £!  MAJORITY proven in
[MP 88].

7.3.12 Assertion Vk > 3 JA ;) ¢ S, The first superpolynomial lower bounds
for the size ¥j-circuits necessary for the computation of IIj-functions where ob-
tained by M. Sipser. We need the lower bound (2/(™), where f grows faster than
any polylogarithm. Such a bound is obtained in the paper [H 86].
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8. TURING REDUCIBILITY BETWEEN PARTICULAR COMPLEXITY CLASSES

In this section we shall present all the known relativizable assertions of the form
Ky <4 K,. Obviously, if K; C K, then K; <% K, therefore all the inclusions
in Figure 1 yield the assertions on Turing reducibility. Let us list all other known
relativizable theorems of the form K; <% K.

(1) The class K is </.-reducible to the class Co-K, and vice versa.
(2) eP* <f PP~
(3) Few” <P NP*.
A A
(4) PHA <, PPA.
The assertion (1) is evident. Both assertions (2) and (3) are simple. The asser-

tion (3) will be proved in §7, and the assertion (2) will be proved right now. The
assertion (4) was proved in the paper [T 89].

Theorem 9. &P <% PP for any oracle A.

Proof. By Theorem 3 it suffices to prove that the language PARITY (a) is </
reducible to the language

. 1
MAJORITY (a) = { L if #1(e) 2 lal,
0, otherwise.

When we prove that a problem F is =<l.-reducible or is not =<4-reducible to a
problem G it is convenient to think that the reducing pair (M, f) is a machine
that works on the input « just as the machine M works on |a| and queries the
oracle G instead of the oracle G(f(-,)) (when M queries the value of the oracle
G(f(-,)) on a word y, we think that the new machine queries the value of G on
the word f(y,«)). Let us define the pair (M, f) reducing the function PARITY to
the function MAJORITY in terms of the work of this new machine.

Having MAJORITY as oracle we can find #;(a) in time polylog(|a|) for any
given a as follows. Assume that |a| = 2*. Ask the oracle MAJORITY whether
#1(a) > 1| is true. Assume that the answer is “yes”. Then check whether
#1() > 2|a|. For that purpose take a word j consisting of §|a| zeros and query
the oracle whether #;(af8) > L|af| . It is easy to verify that this inequality is
equivalent to the inequality #;(a) > %|a|. Repeating this process k times we find
#1 (). Output 1 if #;(«) is odd and 0 else.

All known relativizable assertions of the form K; <% K, are shown at the
Figure 2.

8.1 On completeness of Figure 2. It is unknown if the Figure 2 is complete,
ie., if all the relativizable theorems of the form K; <% K, are shown at Figure 2.
Let us go through the following 15 assertions which should be proved to prove that
Figure 2 is complete.

8.1.1. 3A R*nCo-R* g%“ @®PA. This assertion is true and follows from the fact
that the class P4 is downward closed under S%A—reductions and from the theorem
JA R* N Co-R* Z ®P*. The closeness of the class ®P* under <4-reductions was
proved in [T 89], the second theorem was proved in the previous section.
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FIGURE 2. Turing reducibility between complexity classes.

8.1.2. UP“ N Co-UPA g%A BPP#. This assertion is true and follows from the
fact that the class BPP? is downward closed under S%A—reductions (for all A).

Indeed, in the previous section it was proved that there exists an oracle A such
that UP4 N Co-UP# ¢ BPPA.

8.1.3. 3A FewP? N Co-FewP4 g’;“ UP. This assertion is true and is proved
in this section.

8.1.4. 3A RA g%“ NP# N Co-NP*. This assertion is true and follows from the
fact that the class NP4 N Co-NP* is downward closed under S%A—reductions and
from the fact that 34 R* ¢ Co-NP# (it was proved in the previous section).

8.1.5. 34 UPA g%“ P4 N Co-TP*. This assertion is true and follows from the
fact that the class IP4 N Co-IP* is downward closed under S%A—reductions and
from the fact 34 UP# gz Co-IP# proven in the previous section.

8.1.6. 34 X5 N 114 g’;“ IP4. This assertion is true and is proved in §9.



28 NIKOLAI K. VERESHCHAGIN

8.1.7. 3A BPP# g’;"‘ NP4, This assertion is true and is proved in §9.

8.1.8. 34 ¢P4 g%“ PH”. This assertion is true and follows from the fact that
the class PH# is downward closed under S%A—reductions (the closure of the class
Y is included in the class Yt41) and from the fact that 34 @ pA gz PHA.

8.1.9. 34 AMA g’;"‘ Y4 N4, This assertion is true and follows from the fact
that the class ¥4 NI is downward closed under S%A—reductions and from the
fact that 34 AM#A ¢ ©4.

8.1.10. 34 AM*NCo-AM# g’;“ MA. This assertion was proved by the author
together with An. A. Muchnik. The proof is presented in this section.

8.1.11. 34 & P4 g’;:A IP#. This assertion is true and is proved in §9.
8.1.12. 34 IPA N Co-TPA 274 PPA. Unknown.
8.1.13. IA A N1y 254 =4 | (k> 3). Unknown.

8.1.14. 3A 2 £BA A NTY (k > 3). This assertion is true and follows from
the fact that the class E,? ﬁH;? is downward closed under S%A—reductions and from
the fact that 34 ¥ ¢ 113},

8.1.15. 34 PHA g%“ ¥ (k > 1). This assertion is true and follows from the
assertion 8.1.14.

8.2 Theorems. We prove now the assertions 8.1.3 and 8.1.10.
Theorem 10. (Joint work with An. A. Muchnik.) 34 AM“NCo-AM* g’;“ MAA.

Proof. Consider the following separation problem F'. Let a = 7y, where 3,y € Fa,,
n € N. Then

1, if My3z € B" 3y € B” B(zy) =1,

M, 32 € B" Vy € B” y(zy) =0,

F(a) =4 0, if My3z € B" Vy € B" B(zy) =0,
My 3z € B" Jy € B” y(zy) =1,

*, otherwise.

By Theorem 3 it suffices to prove that F' is not le—reducible to the problem Fya.
Recall that Fia(8) # * only if the norm of 8 is even and that for ||| = 2k

1, if 3r € B* My /35 € B* B(rs) =1,
Fua(B) ={ 0, if Vr € BF My3s € B B(rs) =0,

*, otherwise.

The following property holds for the separation problem Fyia as well as for all
other particular problems G considered in the present paper. For any separation
problem H, if H <% G, then there exists a pair (M, f) reducing H to G such that
the following two assertions hold:

(1) the number of queries made by M for input n does not depend on the
answers of the oracle and is equal to a polynomial of n and
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(2) for all the queries ‘B(u) =7’ made by M to its oracle B during the work on
the input |a|, the length of the word f(u,«) is the same and depends only
on |a|. That is, if we consider the pair (M, f) as a single machine, then all
its queries to the oracle G during the work on the input a have the same
length which depends only on |a].

In the sequel, we assume that all the pairs (M, f) being considered satisfy both
properties (1) and (2).

Assume that F' <. Fyia via the pair (M, h). Let us fix a large n (at the end of
the proof we will see how large it should be). Let ¢ be a function from B™ into
B”. Denote by @ the word of length 22" encoding the graph of . That is, for all
z,y € B", @(zy) is equal to 1 if y = ¢(z), and is equal to 0 otherwise. We will take
words of the form @i, where ¢ and 1 are partial functions from the set B” into
the set B™, as arguments of F.

Let m = poly(n) be the number of queries made by M to the oracle on input
227+l We shall define a binary sequence by, ... , by, partial functions ¢, : B® —
B™, and total functions fy, go : B” — B™ such that the sequence of oracle answers
to the queries made by (M, h) to the oracle Fys during the work on the input, fo1) is
equal to by, ... , by, and the sequence of oracle answers to the queries made by (M, h)
to the oracle Fyya during the work on the input ¢gp is also equal to by, ... ,by,. The
cardinalities of domains of the functions ¢ and ¢ will be bounded by a polynomial of
n, therefore, for large enough n we shall get [Dom()|, [Dom ()| < £2". Obviously,
we shall get a contradiction because (M, h) reduces F to Fya and F(foyh) = 1,
F(®g0) = 0.

Denote by 2k the norm of queries made by the pair (M, h) to the oracle Fya
(i.e., the norm of a’s such that (M,h) queries ‘Fya (o) =?°) during the work on
inputs of the norm 2n + 1 (obviously, ¥ < poly(n)). Define the following auxiliary
separation problem on words of the norm 2k:

1, if Ir € B* M, 25 € B* B(rs) =1,
0, otherwise.

65) = {

Obviously, G solves Fira .
Take arbitrary functions f,g : B — B". Run the machine M on the input
22n+1 with the oracle G(h(-, fg)). Denote by e(f, g) the sequence of oracle answers.
Since the length of the word e(f, g) is equal to m, there exists a word eq of length

m such that the fraction {<f’g>2‘i((£f)):60} is at least 2%,, Denote the set {(f,g) |

e(f,9) = eo} by K. Obviously, for all the pairs (f, g) € K the queries to the oracle
G(h(-, fg)) made by M are the same. Denote those queries by v1, ..., v, (i.e., the
queries are ‘G(h(vi, fg)) =7, ..., ‘G(h(vm, f3)) =?"). Let P(a,v,u) denote the
uth symbol of the word h(v,a), (a € Fa,y1, u € B2*). Denote the bits of the word
€p by bl,... ,bm.

Denote by I the set {i | i < m, b; = 1}. We know that if ¢ € I, then for all
(f,g) € K there exists r; € B* such that M, /»s € B¥ P(fg,v;,r;s) = 1. Again, we
can find a set K’ C K such that for any ¢ € I and for all (f,g) € K’ that r; is the
same and such that ‘%l > . Evidently, QL’(C—;T[) > - Denote the number
Wﬁ by e. We consider the set K’ as a planar set of the area not smaller than
. Obviously, there exists a vertical section of the set K’ of length not smaller than

¢ and there exists a horizontal section of the set K’ of length not smaller than e.
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That is, there exist functions fy, go and families of functions F' and G’ such that
|F| > 2020 G > 202, {fo} x G’ CK', F' x {go} C K.

Define now a partial function ¢ : B® — B" and a family F consisting of
(total) functions from B"™ into B™. Assume that z,y are in B™. Denote by
popularity (x,y) the fraction |{f e F | fle) = y}|/|]-'| Set first ¢ = 0,
F = F'. Then, while there exists a pair (z,y) € (B™ \ Dom(y)) x B™ such that
popularity z(z,y) > 27" pick such a pair (z,y), extend the partial function ¢ to
x by setting ¢(z) = y, and delete from F all the functions f such that f(x) # y.

We claim that the resulting ¢, F have the following properties:

(1) FCF,

(2) all the functions from the set F extend ¢,

(3) popularity z(z,y) < 27"+ for all (z,y) € (B"™ \ Dom(yp)) x B®,

(4) [Dom(g)| < — log,(1F"|/2")) < km +m = poly(n).
The properties (1)-(3) are evident. Let us prove the assertion (4). Let F;, ¢;, =i,
and y; denote the value of the variables F, ¢, x, and y after ith iteration of the
while-loop. Then

|.7-'i+1|/|{f :B" — B" | f extends <pi+1}| > 2|.7-'l|/|{f :B" —» B" | f extends <pl}|

because
|Fig1| > 27" F

and
|{f :B" —» B" | f extends cpi+1}| = 2*"|{f :B" — B" | f extends <p2}|

Since
|.7-'i+1|/|{f :B™ —» B" | f extends cpi+1}| <1,

for all 4, the number of iterations of the while-loop is at most — log, (|F"|/2"(>")).
Apply the same procedure to the family G’ and denote by G, the resulting
functions.
Let us prove that for all i < m,

Fua (h(vi, ©90)) = b.

Take an arbitrary ¢ < m. Consider two cases.
1st case: b; = 1. Then we know that

(*) M1/28 € Bk P(fg(),’Ui,T'iS) =1

for all the f € F. By definition of <'.-reducibility, Fyxa (h(vi, $g0)) # * (if n is so
large that [Dom(p)| < £2"). Assume that Fya (h(vs, o)) = 0. Then

(%) My /35 € B* P(¢go,vi,7:5) = 0.

Let N be the machine that for any given « € F, v € B*, u € Blell in time
poly(|v| + ||a|]) computes P(c,v,u). If a has the form 76, where 7,6 are partial
functions from B™ into B, then the queries made by N to a have one of the two
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following forms: ‘n(z) = y?’ and ‘9(z) = y?’, where z,y € B". For z,y € B"
denote by weg, (z,y) the fraction

|{s € B" | N on the input (¢go, vi, r;8) queries ‘p(z) = y?’}|/2".
Obviously, }_,  cpn Weg, (z,y) < poly(n). Then for any f € F the assertions (x)
and (xx) imply that

1
Z Weq, (T, f(x)) > 6’ therefore
zeB™\Dom(y)

% S wpg(n f@) >

fEF, zeB™\Dom(yp)

D=

Let us rewrite the left hand side of the last inequality as follows:

% S (@ f@) =

fEF, z€B™\Dom(y)

= > Wego (2, y) - popularity z(z,y) <
z€B"\Dom(y), yeB*

<27t Z Wego (2, y) < 27" poly(n).
z€B™\Dom(y), yeB*

If n is large enough, we get the contradiction: 2~ "*poly(n) > %.

2nd case: b; = 0. We know that |{s € B¥ | P(fgo,vi,rs) = 0}|/2" is at most
1/2 for all € B and for all f € F. Assume that Fyra(h(vi,@go)) = 1, that is,
there exists » € B* such that

M2/38 € Bk P(@QOaviars) =1

Then just as it was done in the first case we can get a contradiction. In the same
way we can prove that Vi < m,

Fua (h(vi, forb)) = b;.

Theorem 11. There is an oracle A such that FewP“ N Co-FewP# g’;“ UPA.

Proof. To demonstrate the method let us prove first that there exists an oracle A
such that FewP? N Co-FewP# ¢ UP“. Define the following separation problem F'.
IE{|B]] = [I71], then

L, if 1< #:1(B)
F(By) =< 0, if 1 <#:(v)
%, otherwise.

By the Theorem 1, it is sufficient to prove that F' ¢ UPLOGS. Assume the contrary:
suppose there exist a polynomial p and a polylogarithmic-time predicate P such
that
F(By)=1=3re BrUsI P(By,r) =1,
F(By)=0=Vre BrUIsID P(Bv,r) = 0.



32 NIKOLAI K. VERESHCHAGIN

Take By = 70 = 02", where n is large. Consider two cases.

1st case: Ir € BP(™) P(Byyo,r) = 1.

Pick an expert ro such that P(89y0,70) = 1. If n is large enough, then there
exists u € B", such that ro does not query ‘“yo(u) =7’. Set vo(u) = 1 and get a
contradiction.

2nd case: Vr, P(Bovo,r) = 0.

Let us prove that if n is large enough, then there exists 81 € F, such that
#1(61) = 2 and #{r € B?™ : P(B7yy,7) = 1} > 2. For a u € B" denote by 3¢
the word whose uth bit is 1 and other bits are 0. For all u we have F(S§v) = 1,
therefore, Yu € B" 3ir € BP(™ P(BY~o,r) = 1. Denote that r by r,. Call the set
of all v € B" such that the expert r, queries ‘8%(v) =7’ the 1-base of u, and call
the set of all v € B™ such that the expert 7, queries ‘Bp(v) =7’ the 0-base of u.
Denote the bases of u by Bj(u) and By(u) respectively.

Let us prove that if n is large enough, then there exist ui,us € B™ such that
w1 &€ Bo(usz) U Bi(us2), and uy & By(u;1). Indeed, the numbers of elements in all
bases are bounded by a polynomial of n, say ¢(n). Take random w1, us (independent
and uniformly distributed). We have

(n)

2n
q(n

2

Prob [u; € By(usg)] <

)

~—

Prob [U1 € Bl(UQ)] <

on
q(n
on

~

Prob [UQ € Bl(ul)] <

Therefore, all three events do not happen with probability close to 1.

Fix uy and us such that u; is not in By(u2)UBj (us) and us is not in By (uy). Let
us define the word ; as follows: £ (u1) = B1(uz) = 1 and B (v) = 0 for v # uy, us.
Then pi1vo € D(F) and P(B170,7u,) = P(B170,7u,) = 1 (since uz & Bi(u1),
u1 & Bi(u2)). We have 7y, # ry, because P(8y 0,74, ) = 1 and P(8y* Y0, 7u;) =0
(since uy & By(uz)). The contradiction shows that F' is not in UPLOGS.

Let us prove now that F' is not le—reducible to Fyp. Recall that

1, if #1(a) =1,
FUp(a) = 0, if #1(&) = 0,
x, otherwise.

Assume that F is <l-reducible to Fyyp via the pair (M, f). Then, by definition of
<4-reducibility we have

(*) Vo € D(F) Ve € B* #1(f(e,a)) € {07 1}

Fix n € N and set ag = 02""". Denote by D; the set {a € F,, 11 : #;(a) = 1}.
Evidently, D; C D(F). We construct a set U C B™"! having at most poly(n)
elements such that for all & in D; that are equal to zero on all the elements of U,
the sequence of answers for queries to oracle Fyp made by (M, f) during the work
on input « is the same.

Denote by m the number of queries made by M to oracle during the work on the
input 2"*!. Define the binary sequence by, ... ,b,, and the sequence vy, ..., vy, of
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binary words by induction as follows. Let v; be the word such that the machine M
asks ‘a(v;) =?’ during the work on input 2" after getting the answers by, ... ,b;_1
to the previous questions to oracle and let

b — { 17 if #1(f(vi7a0)) Z 1:
e 0, otherwise.

Let us construct for any 7 a set U; such that Fyp(f(v;, a)) = b; for all @ € Dy being
equal to zero on all the elements of U;. Then we set U = U;il U;.

Let us fix any i not exceeding m and construct U;. By definition of <!
reducibility, there exists a machine N that for any given («,v;,r) (where |r| =
|| f(vi, @)]]) produces rth bit of the word f(v;,a) in time polylogarithmic of |«|.

Consider two cases.

1st case: b; = 1, that is, #1 (f(vi,a0)) > 1. Pick a word r such that f(v;, ag)(r) =
1. Include in U; all the words v € B" such that N asks ‘ap(u) =?” during the
computation on input {(ag,v;,r). Then #;(f(v;,«)) > 1 for all « € F,, 11 being
equal to zero on all the elements of U;. By (x), this means that #1(f(v;,a)) =1
for all @ € D; being equal to zero on all the elements of U;.

2nd case: #1(f(vi,ap)) =0. Let 8o =70 = 0%". We use all notation introduced
during the proof of the first part. Let us prove that the set V = {u € B" |
#1(f(vi, BY0)) = 1} has no more than poly(n) elements. Namely, we claim that
[V| < 3q(n), where ¢(n) is a polynomial upper bound for the number of queries
of the form ‘ag(v) =?” made by N during the computation on any input {ag, v;, r)
(where |r| = ||f(vi,@0)||]). Assume the contrary: suppose that |V| > 3¢(n). For
u € V denote by r,, the word r such that rth bit of word f(v;, 8¥70) is 1. Denote
by By(u) [Bi(u)] the set of all v such that N queries ‘ap(v) =?" [‘B{v0(v) =7’
at some moment during the computation on the input (ag,vi, ) [(BEY0, Vi, )]
Then |Bo(u)|, |B1(u)| < g(n) for all u € V. Take random independent uy, us being
uniformly distributed in V. The probability of event “u; & Bo(uz2) U By (u2), us &
By (u1)” is at least 1 — 3q(n)/|V| > 0. Just as it was done in the proof of the first
part, we can construct a word §; € D(F) such that #i(f(vi, B17)) > 2, which
contradicts to (x).

Likewise we can construct a set V' having poly(n) elements such that #1 (f (vi, 507¢)) =l
lforallue B"\V'. Set U; =V UV".

If n is so large that 2™ > |U|, there exist a;,as € D; such that F(a;) = 1,
F(az2) = 0 and both ay and as are equal to zero on all the elements of U. We have
(M, fYFor (aq) = (M, f)FUP (a). The obtained contradiction proves the theorem.

9. COMPLETE LANGUAGES IN PARTICULAR COMPLEXITY CLASSES
It is known that the following classes
(9.1) P4, NP4, Co-NP4, 4 I}, PSPACE#, P4, PP~

have <P -complete languages. All the known theorems of the form “Kj' is <P;A-
hard (or S%A—hard) for the class K{* for all A” can be obtained using the following
two rules:
(1) aclass K4' is <P -hard for the class K{* if there exists a class K in the list
(9.1) such that K{* C K4 C K3,
(2) aclass K3' is <%-hard for the class K if there exists a class K4 in the list
(9.1) such that K{* <h K4 C K3
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9.1 Are the rules (1) and (2) complete? It is unknown if all true assertions
of the form “K3' is <P:A-hard [S%A—hard] for the class K{* for all A”, where K{'
and K3' are classes shown at Figure 1, can be obtained by the rules (1) and (2). We
have proved some assertions which are necessary to prove in order to get positive
answer to the above question. Indeed, if Ké“ is gfﬂA—hard for the class K f‘, then
K{* C K3 (since all the classes under consideration are downward closed under
<PA_reductions). Therefore, if we have proved that 34 K{* ¢ Kj3', then we have
also proved that 34 K3' is not <P:4-hard for the class K{'. Analogously, if we
have proved that 34 K{! gg:"‘ K3', then we have also proved that 34 Kj' is not
S%A—hard for the class K{'. Let us go through remaining assertions which should
be proved to obtain the positive answer to the above question. We divide the
list of those assertions into two parts. The first part contains all the assertions of
the form “JA Kj' is not g’%’A—hard for the class K{!” such that it is unknown if
JA K3 Sl}’A K{*, the second part contains all the remaining assertions.

The first part of the list.

1. 34 PP is not S%A—hard for the class IP?4 N Co-IPA. It is unknown whether
this is true. Since PP# has <P -complete language, this assertion is equivalent to
the assertion 3A TP N Co-IP4 gg’:"‘ pPPA.

2. 34 E,‘;‘ is not S%A—hard for the class E;;‘_i_l N HI?H‘ It is unknown whether
this is true. Since E,? has a <P -complete language, this assertion is equivalent to
; A A P,A A
the assertion 34 ¥ | NI, £77 i

The second part of the list.

1. 3A 24 N1 is not S’;:A—hard for the class ©4 NI (k > 3). Tt is unknown
whether this is true or not.

2. JA TP is not S’}’A—hard for the class BPP4. This was proved by An. A. Much—l
nik together with the author. The proof is presented in this section.

3. A TP N Co-TP* is not g’%A—hard for the class R* N Co-R™. This assertion
is true and was proved in [HJV 92].

4. A TPANCo-IP* is not g’%A—hard for the class UPANCo-UP*. This assertion
is true. The proof is presented in this section.

5. 3A B4 NTII4 is not S’;:A—hard for the class BPPA. It is unknown whether this
is true or not.

6. 3A Few” is not S%A—hard for the class UP4NCo-UP4. This assertion is true.
In the paper [HJV 92], it was proved that there exists an oracle A such that the
class FewP is not S%A—hard for the class UP4 N Co-UP“. In the present paper
we prove that Few” is not g’%A—hard for the class UP* N Co-UP* for some A.

7. 3A £4 N1 is not <& -hard for the class Few”. Tt is unknown whether this
is true or not.

The listed assertions are “maximal” possible assertions of the form “3A K3' is
not g’}’A—hard for the class K{'” (this means that if we replace the class K{ by
some lower class in the Figure 1 or replace the class K3' by some upper class in
the Figure 1, then the assertion becomes false). Let us give other assertions of



RELATIVIZABLE AND NONRELATIVIZABLE THEOREMS 35

this form proven earlier. In the paper [S 82] it is proved that 34 R has no <pA
complete language, this theorem is strengthened in the paper [HIJV 92] to prove
that 34 R* has no S%A—complete language; in the paper [S 82] it is proved that
JA NPANCo-NP has no <?*-complete language; in the paper [HH 88] it is proved
that 34 BPP# has no <?*-complete language, in the papers [A-S 86], [G 83], [HI
85] both results are strengthened to prove that 34 NP* N Co-NP# has no g’;“-
complete language and JA BPP# has no S%A—complete language; in the paper
[HH 88] it is proved that 34 UP# has no gfﬁA—complete language, this theorem is
strengthened in the paper [HIJV 92] to prove that 34 UP# has no S%A—complete
language.

9.2 Theorems on non-completeness. Let us turn to the proofs. We use the
following lemma.

Lemma 2. If F and G are nondegenerate separation problems such that

(9.1) F ¢ n.u.PLOGS and
(9.2) n.u.LOGS(G) = n.u.PLOG,

then there exists an oracle A such that the class POLYA(G) is not S%A—hard for
the class POLY(F).

Proof. By the Theorem 4, it suffices to prove that the separation problem F is <l
reducible to no language in the class LOG(G). Assume that there exists a language
H € LOGS(G) such that F <L, H. Then H is in n.u.LOGS(G) = n.u.PLOG C
n.u.PLOGS. Therefore F' is in n.u.PLOGS because the class n.u.PLOGS is down-
ward closed under <!.-reductions.

Assertions 3 and 4 can be easily derived from the Lemma 2, Theorem 3, and the
following theorem.

Theorem 12. n.u.IPLOG N Co-n.u.IPLOG = n.u.PLOG.

We omit the proof of Theorem 12 because its proof is an easy generalization of
Nisan’s result (see [N 89]) n.u.BPPLOG = n.u.PLOG. Independently, Theorem 12
was proved by the author it the first version of the present paper.

The assertion 6 can be proved in similar way. Formally, we cannot use Lemma 2
because we do not know whether the manifold Few” is regular.

Theorem 13. If F is a nondegenerate separation problem and F is not in n.u.PLOGS ]
then there exists an oracle A such that the class Few? is not S%A—hard for the class
POLY*(F).

Proof. We can apply the diagonal construction used in the proof of Theorem 3. It
is clear that it suffices to prove the following lemma.

Lemma 3. Let P(a,r) be a predicate being defined on the set F x B* and com-
putable in poly(||a||, |r|) queries to o and let p(n), q(n) be polynomials such that
Va € F |{1° e Bl : pa,r) = 1}| < q(||a]]). Then the function

f(a) = [{r e BYIeD : P(a,r) = 1}]

is mon-uniformly polylogarithmic.

Proof. Let us fix a polynomial s(||«||, |r|) and a machine M such that M computes
P(a,r) in time s(]|«||, |r]) for any given {a,r). Let n be an integer. Denote p(n) by
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m and s(n,m) by k. Let us call words in the set B™ experts. We say that an expert
r accepts a € Fy, if P(a,r) = 1. For any a € F,, let f(a) = {r € B™ | r accepts a}.

It is sufficient to prove that the function f(a) can can be computed in ¢(n)k?
queries.

Call any partial function ¢ : B” — B a segment. Two segments are consistent
if they have common extension. Any expert for a given o : B — B queries the
value of a on k arguments, say uy,... ,u;. Call the segment {(u;, a(u;)) | i < k}
the information of r about . Call the information of r about any « accepted by r
a certificate of expert r. A certificate is a certificate of some expert.

We find all experts accepting « for any given o € F,, as follows. For any subset U
of B™ denote by ®;(«) the set of all certificates having the same value on elements
of U as o has. Our goal is to construct a set U such that ®y(a) is the set of
all certificates consistent with a. Let us start with U = (. Repeat k times the
following loop.

Take any maximal (with respect to inclusion) subset ¥ = {¢1,... ,¢;} of ®y(a)
such that the sets Dom(ypi) \ U, ... ,Dom(yp;) \ U are pairwise disjoint. Then
Jj < gq(n) because there exists § € F, being consistent with all certificates in
U and ¢1,...,p; are certificates of different experts (because certificates of any
expert are pairwise inconsistent). Ask the value of « on all the elements of the
set V = (Dom(¢1) U---UDom(p;)) \ U. Since ¥ is maximal, the domain of any
certificate p € @ (a)\ ¥ intersects with V. Set U = UUV. Note that |Dom(¢)\ U]
is decreased for any certificate ¢ € () \ ¥ and Dom(p) \ U becomes empty for
any certificate ¢ € ¥ after this setting. The loop is completed.

The value max{|Dom(p) \U| | ¢ € ®y(a)} decreases or remains zero after each
iteration of the above loop. Therefore, Dom(p) C U for any ¢ € ®y(a) after k
iterations of the loop. This means that ®¢; () is the set of all certificates consistent
with a. Obviously, an expert accepts « iff some its certificate is consistent with a.
Hence we know all the experts accepting . It remains to note that during each
iteration of the loop we make at most ¢(n) - k queries to a.

The assertion 2 cannot be derived from the Lemma 2 since n.u.IPLOG D n.u.NPLOG DN
n.u.PLOG.

Theorem 14. (Joint work with An. A. Muchnik). There is an oracle A such that
IP4 is not S’}’A—hard for the class BPPA,

We prove this theorem together with the yet unproved theorems from the pre-
vious section.

Theorem 15. 3A BPP# 24 NP4,
Theorem 16. JA & P4 g’;:"‘ P4,

Theorem 17. 3A £4 NI 2504 P4,

Proofs of Theorems 14-17. In fact, Theorem 15 follows from Theorem 14 because
the class NP4 has a <P -complete language and NP4 C IP“. Nevertheless we prove
first Theorem 15. By Theorem 4 it suffices to prove that Fgpp ﬁép Fnp.

Assume that Fgpp =<4 Fxp. Let (M, f) be a reducing pair. Fix a large n.
Denote by m the number of queries made by M to oracle during the work on
input 2". Obviously, m < poly(n). Assume that « is in F;. Run the machine
M supplied with the oracle Fxp(f(-,@)) on the input 2™. Denote by e(a) the
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sequence of oracle answers received by M in that computation (e(a) € B™). Take
an a € F, having lexicographical greatest e(«), denote that « by ag. Denote
e(ap) by eg = b9---80 | and denote the queries of M to the oracle Fxp(f(:, ap))
by v1,...,v, (more precisely, the queries are ‘Fxp(f(v;,ap)) =7’). Let I be the
set of all the indices 7 < k such that Fxp(f(v;,a0)) = 1, that is, #1 f(vi, ap) > 0.
For each i € I fix a word ¢; such that f(v;,a)(t;) = 1. Let g(n) be a polynomial
bounding the time of weak computation of the function f(v;,a) for « € F,,, i < m.
Obviously, for any ¢ € I there exists a set U; C B" having at most g(n) elements
such that f(v;,a)(t;) = 1 for all @ having the same values on all the elements of
Ui as ag has. Set U = |J;c;U;. Evidently, |[U| < mgq(n) = poly(n). We have
Fxp(f(vi,a)) = 1 for all i < m such that Y = 1 and for all @ € F,, having the
same values on all the words in U as aq has.

We claim that, moreover, e(a) = e(ag) for all & € F,, having the same values
on all the words in U as ag has. Assume the contrary. Let a be a counterexample.
Let by -+-bp be the bits of e(a). Let i be the least number such that b; # bY.
Then, since the word eq is the lexicographical greatest word among the word of
the form e(a), o € F,, we have b; = 0, b = 1. As a and ap have the same
values on all the words in U, we have Fyxp(f(vi,)) = 1. On the other hand
b9 b2, = by ---b;_1, therefore the ith query to the oracle made by M during
the computation on the input 2" with the oracle Fxp(f (-, @)) is ‘“Fxe (f (v, ) =7,
Consequently, Fxp(f(v;,a)) = b;. The contradiction proves the claim.

The equality e(a) = e(ap) implies that (M, f)F~e (o) = (M, £)F~P (ag). Without
loss of generality we may assume that (M, f)f~* (ag) = 0. Take n so large that
U] < %2”. Let a be equal to ap on all the elements of U and to 1 on all the elements
of B"\ U. We have Fgpp(a) £ (M, )~ (ag) = (M, f)F~?(a). Theorem 15 is
proved.

Let us prove Theorem 16. Since PARITY is a language, by Theorem 3, it suffices
to prove that PARITY £% IPLOG. Assume that PARITY is <4-reducible to a
language F' in the class IPLOG via a pair (M, f). Define ag, m, q(n), vi,... ,Vm,
ep just as it was done in the previous proof. Since F is in IPLOG, there exists a
polylogarithmic Verifier V for F. For each i < m such that b = 1, fix a Prover P;
such that Prob [(P;,V)(f(vs,c0)) = 1] > 2/3. Let N be a machine that computes
the tth bit of the word f(v, ) within time poly(||a|| + |v|) for any given («,v,t),
where |t| = ||f(v,a)]|. Let r = poly(n) is an upper bound for the number of queries
of the form ‘ag(z) =7, where z is in B”, made by N in computations on inputs
of the form (ag,v;,t), where |t| = ||f(vi,0)||- Denote f(v;, ) by Bi. Let s =
poly(n) be an upper bound for the number of queries of the form ‘3 (t) =7, where
[t| = ||8]|, made by V in dialogue with P; on input §. Let x be in B™. Denote
by wi, (x) the probability of the event “there exists ¢ € BlI%ll such that V' queries
‘BE(t) =7 in the dialogue with P; on input ap and N queries ‘ag(x) =?’ during
the computation on the input {(ag,v;,t)”. Then Zi:b?:l > semn Wh, (2) < msr,
therefore, there exists 2o € B™ such that Y, 0, wl (zo) < msr/2" < 1/3 (if n is
sufficiently large). Change the zoth bit of ag and denote the resulting word by a.
Let us prove that e(a) = e(ag), and therefore (M, f)¥ (o) = (M, f)¥ (o). Assume
that e(a) # e(ap). Denote by by - - - by, the bits of e(«). Take the least ¢ such that
b; # Y. Then b; = 0 and b9 = 1. Therefore, F(f(v;,a)) = 0, consequently,

Prob [(P;, V) (f(vi, ) = 1] < 1/3.
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On the other hand,
Prob [(P;, V)(f(vi,a0)) = 1] > 2/3.

Hence, w!, (z0) > 1/3 because o and aq have different value only on zp. The
obtained contradiction shows that e(a) = e(ag) and (M, f)F () = (M, f)¥ (ap).
Since PARITY (a) # PARITY (o), the theorem is proved.

Let us prove Theorem 14. We have to prove that the separation problem Fgpp is
jif—reducible to no language F' in the class IPLOG. Assume the contrary: Fgpp le
F € TPLOG. We use all notations from the previous proof. Without loss of
generality we may assume that (M, f)¥(ap) = 1. Let a; be a word in the set
{a € F,, | e(a) = e(ap)} having the least number of ones. Without loss of generality
we may assume that oy = ag. If #1(ap) < %2”, then the contradiction is already
derived. If #1(ap) > £2", then there exists zo € B™ such that Zi:b9=1 wi, (zg) <
e < 1/3 and ap(z9) = 1. Define the word a as follows: a(zg) = 0, a(z) =
ag(x) for & # x9. Then #1 () < #1(ap). Just as it was done in the previous proof
we can prove that e(a) = e(ap). This contradicts with the choice of ayp.

Let us prove Theorem 17. Let a be a partial function from B” into B™. Denote
by @ the word encoding the graph of « (& € B22n). Consider the separation problem

(1, if In € N : v = af, where o and 3 are partial
functions from B"™ into B such that « is total and 3
is defined on all the arguments but one,

F(y)={ 0, if3n € N:v = af, where a and /3 are partial

functions from B"™ into B such that 3 is total and «

is defined on all the arguments but one,

\ %, otherwise.

Denote by E,, the set {y € Fa,y1 | F(y) # *}.

By Theorem 4, it suffices to prove that there exists no G € IPLOGS such that
F <L G. Assume that such a problem G exists. Let (M, f) be pair reducing F to G.
Fix alarge n. We use all the notations from the previous proofs. Take a word v € E,
having the lexicographical greatest e(y). Let ap, 39 be partial functions such that
v = @pBo. Without loss of generality we may assume that F(apf3g) = 1, that is, o is
total. Let 3y be undefined on the word z;. Fix a Verifier for the solving the problem
G. We enumerate bits of v in such a way that for z,y € B"™, v(0zy) = ao(zy),
v(lzy) = Bo(wy). For an i such that b) = 1, define the weight w’, , (u) of word
u € B> as follows: w!, 5 (u) is equal to the probability of the event “there exists
t € BIfwieo)l such that V' queries ‘f(v;, ap)(t) =7’ in the dialogue with P; on
input f(v;,a9) and N queries ‘ag(u) =7’ during the work on input (ag,v;,t)”. If
n is large enough, we can find zg € B” such that Zi:b?:l wl, 5, (0zoco(20)) < 1/6

and we can find y; € B” such that ). 0, wgoﬁo(lxlyl) < 1/6.
Define the partial functions «, 8 bas follows:

_ 010(217), if x # o,
ale) = { undefined, if z = zo,
6(36):{60(30), if ¢ # 21,

Y1, if z = x.
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Then e(@B) = e(a@ofo) and F(aB) = 0. The obtained contradiction proves the

theorem.
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