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Abstra
t. Starting with the paper of Baker, Gill and Solovay [BGS 75℄ in 
om-

plexity theory, many results have been proved whi
h separate 
ertain relativized


omplexity 
lasses or show that they have no 
omplete language. All results of this

kind were, in fa
t, based on lower bounds for boolean de
ision trees of a 
ertain type

or for ma
hines with polylogarithmi
 restri
tions on time. The following question

arises: Are these methods of proving \relativized" results universal? In the �rst part

of the present paper we propose a general framework in whi
h assertions of univer-

sality of this kind may be formulated and proved as 
onvenient 
riteria. Using these


riteria we obtain, as easy 
onsequen
es of the known results on boolean de
ision

trees, some new \relativized" results and new proofs of some known results. In the

se
ond part of the present paper we apply these general 
riteria to many parti
ular


ases. For example, for many of the 
omplexity 
lasses studied in the literature all

relativizable in
lusions between the 
lasses are found.

1. Introdu
tion

Most theorems in re
ursion theory are known to be relativizable. This means

that for any language A, a theorem remains true if we take ma
hines supplied with

ora
leA as the model of 
omputation. This is not true in 
omplexity theory. In 1975

in the paper [BGS 75℄, ora
les A and B were 
onstru
ted su
h that P

A

6= NP

A

and

P

B

= NP

B

. This means that although we don't know whi
h of the two assertions

P = NP and P 6= NP is true, neither of them is relativizable. After [BGS 75℄, many

theorems of the following kind were proved (for pairs of relativizable 
omplexity


lasses K

1

;K

2

): there exist ora
les A and B su
h that K

A

1

6= K

A

2

and K

B

1

= K

B

2

.

Sin
e many interesting 
omplexity 
lasses lie between P and PSPACE, for su
h


lasses one 
an always take the ora
le B 
onstru
ted in [BGS 75℄ as the se
ond

ora
le be
ause in fa
t P

B

= PSPACE

B

is true for that ora
le. In 1989 the �rst

non-relativizable theorems in 
omplexity theory appeared. The �rst of them was

the theorem from [LFKN 89℄: PH � IP. Earlier, in [FS 88℄, it was proved that

9A Co-NP

A

6� IP

A

.

All known proofs of results having the form 9A K

A

1

6= K

A

2

(that is, 9A K

A

1

6� K

A

2

or the 
onverse) 
onsist of two parts: the \diagonal" part (
onstru
ting the ora
le

step by step), whi
h is the same in all proofs, and the spe
i�
 \
ombinatorial" part,
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2 NIKOLAI K. VERESHCHAGIN

in whi
h it is proved that every step 
an be made. The �rst result of the present

paper is the formalization of this statement. The proof of Theorem 1 in Se
tion 3 is

a general formulation of the diagonal part of su
h proofs. Corollary 1 shows what


ombinatorial assertion is to be proved in every spe
i�
 
ase.

Theorems of the following form have also appeared in the literature: there exists

an ora
le A for whi
h the 
lass K

A

has no Karp 
omplete (or Cook 
omplete)

language. The �rst paper of this kind known to the author is [S 82℄. In that paper

it is proved that there exists an ora
le A for whi
h the 
lass NP

A

\Co-NP

A

has no

Karp 
omplete language (more pre
isely, no language 
omplete under polynomial

many-one redu
tions relative to A), and there exists an ora
le A for whi
h the 
lass

R

A

has no Karp 
omplete language.

All we have said about proofs of theorems of the form 9A K

A

1

6� K

A

2

is true for

proofs of nonexisten
e of 
omplete languages in 
omplexity 
lasses. Theorem 2 in

Se
tion 4 provides the diagonal part of su
h proofs in general form.

Both Theorem 1 and Theorem 2 give the 
riteria. Theorem 1 is the 
riterion of

whether

(1.1) 8A K

A

1

� K

A

2

;

while Theorem 2 is the 
riterion of whether

(1.2) 8A (K

A

2

has a Karp 
omplete problem for the 
lass K

A

1

):

Roughly speaking, the 
riteria are as follows. Let K be a 
omplexity 
lass. Let us

repla
e all polynomial restri
tions in the de�nition of the 
lassK by polylogarithmi


ones and repla
e de
ision problems (i.e. languages) by separation problems. Denote

by KLOGS the resulting \
ounterpart" of the 
lass K. Then assertion (1.1) is

equivalent to the absolute in
lusion K

1

LOGS � K

2

LOGS, and assertion (1.2) is

true i� the 
lass K

2

LOGS has a language 
omplete for the 
lass K

1

LOGS. The

analysis of proofs of relativizable assertions of the form (1.1) (for example, BPP �

�

2

\ �

2

from [S 83℄) shows that the more natural formulations of su
h assertions

have the form K

1

LOGS � K

2

LOGS.

Similar 
riteria exist also for theorems of the following two forms:

(1.3) 8A ( the 
lass K

A

2

has Cook 
omplete language for the 
lass K

A

1

)

and

(1.4) 8A (8L

1

2 K

A

1

9L

2

2 K

A

2

: L

1

is Cook redu
ible to L

2

);

i.e. \K

A

1

is Cook redu
ible to K

A

2

".

These 
riteria are formulated in Se
tions 5 and 6.

The new approa
h to relativizable theorems makes the solving of problems of the

forms (1.1){(1.4) easier in both the psy
hologi
al and te
hni
al sense. In Se
tions 7,

8 and 9 we as
ertain, for several known 
lasses K

1

, K

2

between P and PSPACE to

whi
h the proposed 
riteria 
an be applied, whi
h of the two assertions|(1.1) or the

negation of (1.1)|is true or is unknown. We do the same thing also for assertions

of the form (1.2), (1.3) and (1.4). Some new positive and negative results results

of this type are proved (we 
all positive results of the form (1.1){(1.4)). Some

problems of this kind remain open.
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for useful 
omments and to Fred Green for the help in translation into English.
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2. Basi
 definitions and notation

We denote the set of all words over an alphabet A by A

�

. By B we denote the

set f0; 1g.

A separation problem is any fun
tion from the set B

�

into the set f0; 1; �g. The

meaning of this de�nition is that we have to separate the set fx j F (x) = 1g from

the set fx j F (x) = 0g. Denote by D(F ) the set fx 2 B

�

j F (x) 6= �g.

We will identify every language L � B

�

with its 
hara
teristi
 fun
tion, denoted

by the same letter:

L(x) =

�

1; if x 2 L;

0; if x 62 L.

Thus any language 
an be 
onsidered as a separation problem. The length of the

word x is denoted by jxj.

Denote dlog

2

ne by logn and let log(0) be 0. Fun
tions of the form p(log n),

where p is a polynomial, will be 
alled polylogarithms. Expressions poly(n) and

polylog(n) will denote a polynomial and a polylogarithm, respe
tively.

We shall study 
omplexity 
lasses de�ned by Turing ma
hines whose running

time is bounded by a polylogarithm of the length of the input. An ordinary Turing

ma
hine in polylogarithmi
 time 
an read only a pre�x of the input word having

polylogarithmi
 length. Therefore, we will use the model of Turing ma
hines whi
h

is 
ommonly used when time restri
tions are so small. In this model, the input word

is given as an ora
le. More pre
isely, besides the work tape, the ma
hine has an

additional tape 
alled the input tape, on whi
h at the beginning of a 
omputation

the length of the input word x is written

1

. The ma
hine may at any moment of

a 
omputation ask a question of the form `x(i) =?', i.e., it 
an write down on the

input tape the number i � jxj and then re
eive the ith symbol of x, denoted by

x(i), written on the input tape. The time to write down i is added to the total

time but then the \ora
le" supplies immediately x(i). (We 
ould 
onsider another

model in whi
h the ma
hine doesn't get the length of the input word, and when

it asks `x(i) =?' with i > jxj it re
eives the answer \unde�ned"; evidently, every

ma
hine working in time t(jxj) 
an by simulated by a ma
hine of this new type in

time t(jxj) + (log(jxj))

O(1)

.)

If time restri
tions are polynomial, then our model is equivalent to ordinary

Turing ma
hines. By M(x) we will denote the output of M on the input word x.

Our �rst goal is to give the de�nition of the polylogarithmi
 
ounterpart of

a 
omplexity 
lass. As an example, we �rst de�ne polylogarithmi
 
ounterparts

of three well known 
lasses, P, NP and R, and then give the general de�nition.

The polylogarithmi
 
ounterpart of a 
omplexity 
lass is always a 
lass of sepa-

ration problems. If K denotes a 
omplexity 
lass a

epted in the literature, then

the polylogarithmi
 
ounterpart of this 
lass is denoted by KLOGS, for example,

PLOGS, NPLOGS and RLOGS.

Thus, let F be a separation problem. Then by de�nition F 2 PLOGS, if there

exists a deterministi
 Turing ma
hine M whose 
omputation time is restri
ted by

a polylogarithm of the size of the input su
h that M(�) = F (�) for all � 2 D(F ).

By a polylogarithmi
 nondeterministi
 ma
hine we mean any nondeterminis-

ti
 Turing ma
hine all of whose 
omputations on input � have no more than

1

Convention: we assume that natural numbers are represented in binary. Moreover, we identify

natural numbers and binary words: a natural number n is identi�ed with the binary notation of

the number n+ 1 without the leading 1.
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polylog(j�j) steps. By de�nition, F 2 NPLOGS if there exists a polylogarith-

mi
 nondeterministi
 ma
hine M su
h that if F (�) = 1, then M a

epts �, and if

F (�) = 0, then M reje
ts �.

By a probabilisti
 polylogarithmi
 ma
hine we mean any probabilisti
 Turing

ma
hine M whose 
omputation time on input � is bounded by polylog(j�j) (for all

out
omes of 
oin tossing). By de�nition, F 2 RLOGS if there exists a polylogarith-

mi
 probabilisti
 ma
hine M su
h that if F (�) = 1, then Prob [M(�) = 1℄ > 2=3,

and if F (�) = 0, then Prob [M(�) = 1℄ = 0 (if F (�) = �, then this probability 
an

be arbitrary).

Let us turn to the de�nition of the notion of polylogarithmi
 
ounterpart of a


omplexity 
lass. To this end we have to �x a general framework, a

ording to

whi
h most 
omplexity 
lasses between P and PSPACE are de�ned.

To this end 
onsider the de�nitions of two parti
ular 
omplexity 
lasses (NP

and BPP) in a 
onvenient form.

2.1 L 2 NP () there exists a polynomial time 
omputable fun
tion s : B

�

!

N and a polynomial time predi
ate P (x; i) su
h that x 2 L, 9i � s(x) : P (x; i),

2.2 L 2 BPP () there exists a polynomial time 
omputable fun
tion s :

B

�

! N and a polynomial time predi
ate P (x; i) su
h that if x 2 L, then the ratio

�

�

fi 2 Nj1�i�(x);P (x;i)g

�

�

s(x)

is greater than 2=3 and if x 62 L, then this ratio is less than

1=3.

2

Let us denote in both de�nitions by f(x) the sequen
e of values of the predi
ate

P (x; i) for i � s(x). Then the membership of x in L is de�ned in terms of the word

f(x). Any bit of the word f(x) 
an be 
omputed in time bounded by a polynomial

of jxj given its number. Now we 
ome to the following de�nition.

Let f be a fun
tion from B

�

into B

�

, and t : N! N.

De�nition 1. A fun
tion f is weakly 
omputable in time t if

(1) the fun
tion x 7! jf(x)j is 
omputable in time t(jxj),

(2) the partial binary predi
ate P (x; i) = (ithbit of the word f(x)) 
an be 
om-

puted by a ma
hine M whi
h for all x 2 B

�

and all i � jf(x)j works in time

not ex
eeding t(jxj).

Fun
tions that are weakly 
omputable in time poly(n), (polylog(n) and 2

O(n)

,

respe
tively) are 
alled weakly polynomial (weakly polylogarithmi
 and weakly expo-

nential, respe
tively) . For example, the fun
tion f(x) = 0

2

jxj

is weakly polynomial

(by 0

n

we denote the word 
onsisting of n zeros) and the fun
tion f(x) = x is

weakly polylogarithmi
.

Both de�nitions 2.1 and 2.2 have the following form. For a �xed separation

problem F we de
lare that a language L is in the 
lass if there exists a weakly

polynomial fun
tion f su
h that L(x) = F (f(x)) for all x 2 B

�

. Let POLY(F )

denote the 
lass de�ned in this way by means of separation problem F . We say that

a 
lass K is generated by a separation problem F if K = POLY(F ). For example,

the 
lass NP is generated by the following separation problem F

NP

:

F

NP

(�) =

�

1; if 9i � j�j �(i) = 1,

0; otherwise.

2

jM j denotes the 
ardinality of the set M .
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To generate the 
lass BPP we 
an take as F the separation problem

F

BPP

(�) =

8

>

<

>

:

1; if #

1

(�) >

2

3

j�j,

0; if #

1

(�) <

1

3

j�j,

�; otherwise,

where #

1

(x) denotes the number of ones in the binary word x.

It is easy to verify that all the 
lasses P, NP, R, BPP, UP, FewP, �

k

, �P, PP,

PSPACE, MA, AM, IP (without private 
oin tossing) have the form POLY(F ) for

some F .

Let us de�ne a partial ordering on the set f0; 1; �g assuming that � < 0, � < 1.

De�ne LOGS(F ) as the 
lass of all separation problemsG su
h that for some weakly

polylogarithmi
 fun
tion f the following is true: 8� 2 B

�

G(�) � F (f(�)), and de-

�ne LOG(F ) to be the 
lass of all the languages in LOGS(F ). The 
lass LOGS(F )

is just 
alled the polylogarithmi
 
ounterpart of the 
lass POLY(F ). More pre
isely,

separation problem F de�nes the pair|the 
lass POLY(F ) and its polylogarith-

mi
 
ounterpart LOGS(F ) (as we see later, the 
lass LOGS(F ) is not uniquely

determined by the 
lass POLY(F )).

Let us turn out to relativized 
lasses. An ora
le is any language. An ora
le

ma
hine is a Turing ma
hine having an extra tape 
alled ora
le tape; this tape has

a read/write head. That head 
an write only zeros and ones. To run an ora
le

ma
hine on an input we must supply it with an ora
le. Let A be an ora
le. Then

ma
hine works as usual two tape Turing ma
hine with one ex
eption. If ora
le

ma
hine gets into a 
ertain state, then the word u written on ora
le tape (starting

from the �rst 
ell up to the 
ell where the head is now) is 
onsidered as a question

to the ora
le. In this 
ase ora
le provides its answer A(u) in the 
ell viewed by the

head. The time needed for ora
le to provide its answer is assumed to be 1.

Let M be an ora
le ma
hine and let A be an ora
le. Denote by M

A

(x) the output

produ
ed by M supplied with ora
le A on input x, and by t

M

A(x) the running

time ne
essary to provide this output. Call an ora
le ma
hine M polynomial [or

exponential ℄ if there exists a polynomial q(n) [a 
onstant 
℄ su
h that t

M

A
(x) �

q(jxj) [t

M

A(x) � 2


jxj+


℄ for all x 2 B

�

and all A � B

�

. A fun
tion f is 
alled

polynomial [exponential℄ relative to A, if there exists a polynomial [exponential℄

ora
le ma
hine M su
h that f(x) = M

A

(x) for all x (that is, M

A


omputes f).

Let A be an ora
le. We want to relativize the de�nition of the 
lass POLY(F ).

Let us de�ne the notion of the weak 
omputability relative to ora
le A. Namely, in

the de�nition of weak 
omputability we allow ma
hine M to 
all ora
le A and in

item (1) we allow the fun
tion jf(x)j to be 
omputable in time t(jxj) by a ma
hine

with ora
le A.

De�nition 2. POLY

A

(F ) is the 
lass of all languages L su
h that L(x) = F (f(x))

for all x 2 B

�

for some fun
tion f being weakly polynomial relative to A.

3. A 
riterion of relativizable in
lusion of one 
omplexity


lass into another 
omplexity 
lass

The single theorem of this se
tion 
laims that a polynomial 
omplexity 
lass

K

A

1

is in
luded in a polynomial 
omplexity 
lass K

A

2

for all ora
les A if and only

if the (absolute: no ora
les) in
lusion between their polylog-
ounterparts holds.
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That theorem is valid for all the 
lasses of the form POLY

A

(F ) provided that the

separation problem F is nondegenerate in the following sense:

3.1 there exists a weakly polynomial fun
tion f : N! B

�

su
h that jf(n)j = n

and F (f(n)) 6= � for all n 2 N;

3.2 there are two words (denote them zero

F

and one

F

) su
h that F (zero

F

) = 0,

F (one

F

) = 1.

All the problems de�ning the 
omplexity 
lasses mentioned above are nondegen-

erate.

Theorem 1. If separation problem F satis�es the 
ondition 3.1 and separation

problem G satis�es the 
ondition 3.2, then the following are equivalent:

3.3 LOGS(F ) � LOGS(G),

3.4 F 2 LOGS(G), and

3.5 POLY

A

(F ) � POLY

A

(G) for all A � B

�

.

If F is a language (i.e., D(F ) = B

�

), then all these 
onditions are equivalent to the

following 
ondition:

3.6 LOG(F ) � LOG(G).

Proof. Obviously, 3.3 implies 3.4. Let us prove that 3.4 implies 3.3. Let F be

in the 
lass LOGS(G), and let g be a weakly polylogarithmi
 fun
tion su
h that

F (�) � G(g(�)). Let us prove that LOGS(F ) � LOGS(G). Let H be in LOGS(F )

and f be a weakly polylogarithmi
 fun
tion su
h that H(�) � F (f(�)). Then

H(�) � G(g(f(�))) for all � 2 B

�

. It is easy to see that g(f(�)) is a weakly

polylogarithmi
 fun
tion (the 
lass of weakly polylogarithmi
 fun
tion is 
losed

under superpositions), therefore, H belongs to LOGS(G).

Evidently, the assertion 3.3 implies the assertion 3.6, and if F is a language, then

3.6 implies 3.4.

Let us prove that 3.4 implies 3.5. Let f be a weakly polylogarithmi
 fun
tion

su
h that F (�) � G(f(�)). Assume that A is a subset of B

�

and L is an element of

POLY

A

(F ), that is, there exists a fun
tion g being weakly polynomial relative to A

su
h that L(x) = F (g(x)). Consequently, L(x) = G(f(g(x))). It is easy to see that

the fun
tion f(g(x)) is weakly polynomial relative to A (superposition of a weakly

polylogarithmi
 fun
tion and of a fun
tion being weakly polynomial relative to A

is weakly polynomial relative to A). Hen
e, L belongs to POLY

A

(G).

Let us prove that if 3.4 is not true, then 3.5 is not true also. Assume that F

is not in LOGS(G). This means that for any separation problem H 2 LOGS(G)

there exists an � 2 B

�

su
h that F (�) 6� H(�). Let us prove that, moreover, for

any separation problem H 2 LOGS(G) there exist in�nitely many � 2 B

�

su
h

that F (�) 6� H(�). Assume that it is not true, i.e., there exist a number n and

a weakly polylogarithmi
 fun
tion f su
h that F (�) � G(f(�)) for all � 2 B

�

,

j�j > n. Then the fun
tion

f

1

(�) =

8

>

<

>

:

f(�); if j�j > n,

zero

G

; if j�j � n, F (�) = 0,

one

G

; otherwise.

is weakly polylogarithmi
 and F (�) � G(f

1

(�)) for all � 2 B

�

.

Let us �x a fun
tion en
oding pairs of words by words in the following way.

Assume that x is in B

�

. Let us double all the bits of x and add the word \01"
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to the end of the resulting word. Denote the resulting word by �x (for example,

001 = 00001101). The word �xy will be 
onsidered as the 
ode of the pair hx; yi.

Obviously, for given �xy we 
an in polynomial time �nd x and y and for given word

u we 
an de
ide in polynomial time whether u has the form �xy. For an ora
le A

and n 2 N, denote by A

n

the word of length n, whose ith bit is equal to A(�ni).

3

We will 
onstru
t an ora
le A su
h that the language L

A

= fn j F (A

n

) = 1g

belongs to the set POLY

A

(F ) n POLY

A

(G). The assertion L

A

2 POLY

A

(F ) will

follow from the following global assertion:

(G) 8n 2 N F (A

n

) 6= �:

If (G) is true, then L

A

(n) = F (A

n

) for all n. Sin
e the fun
tion h(n) = A

n

is

weakly polynomial relative to A, the assertion (G) implies that the language L

A

is

in POLY

A

(F ).

Let us enumerate all the fun
tions being weakly polynomial relative to ora
les.

This means that we enumerate pairs of ora
le ma
hines involved in the de�nition of

polynomial weak 
omputability relative to an ora
le. Denote ith fun
tion by f

A

i

(x)

(A is 
onsidered as the se
ond argument of the fun
tion). Let E be a polynomial-

time de
idable language su
h that F (E

n

) 6= � for all n 2 N. Su
h a language exists

be
ause F satis�es the 
ondition 3.1. We start with A = E to make the 
ondition

(G) true. Then we make 
ountable number of steps numbered by 1; 2; : : : . On the

ith step we 
hange the value of A on a �nite set of words to satisfy the following

lo
al 
ondition

(L

i

) 9n 2 N F (A

n

) 6= G(f

A

i

(n)),

being 
areful not to injure the 
ondition (G).

Then we �x all the values of A needed to ensure the truth of the assertion ( L

i

)

and also all the values of A that were 
hanged. This is to be understood as follows.

Evidently, there exists a �nite set U of words su
h that for all A

0

� B

�

, if A

0

and A have the same values on all the elements of U , then (L

i

) is true for A

0

. We

�nd su
h a U and \label" all its elements and all the elements on whi
h A's value

was 
hanged. The values of A on labeled words are 
alled \�xed" and 
annot be


hanged later. Thus, when we will make ! steps, we will obtain an ora
le A su
h

that the 
ondition (G) is true and the 
ondition ( L

i

) is true for all i 2 N. Evidently,

L

A

2 POLY

A

(F ) n POLY

A

(G) for that A.

So we have to des
ribe ith step. Let A be the ora
le 
onstru
ted on (i � 1)th

step (with some �xed values).

Assume that � is in B

�

and j�j = n. Denote by A[�℄ the ora
le where A

n

is

repla
ed by �, that is,

A[�℄(u) =

�

A(u); if u has not the form �ni, i � n,

�(i); if u = �ni, where i � n.

Set H(�) = G(f

A[�℄

i

(j�j)).

Sin
e A is polynomial-time de
idable (A is obtained from E by �nite number

of 
hanges), the fun
tion � 7! f

A[�℄

i

(j�j) is weakly polylogarithmi
, therefore, H 2

LOGS(G). Consequently, there exist in�nitely many � 2 B

�

su
h that F (�) 6�

H(�). Hen
e, there exists an � 2 B

�

su
h that F (�) 6� H(�) and no value of A on a

3

Re
all that we identify natural numbers with binary words.
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word of the form j�ji, i � j�j is �xed. Pi
k su
h an � and repla
e A with A[�℄. Now

the assertion ( L

i

) is true for n = j�j be
ause F (A

n

) = F (�) 6� H(�) = G(f

A

i

(n)).

Fix the values of A ensuring the truth of 
ondition ( L

i

). Note that the asser-

tion (G) is not injured be
ause F (A

n

) = F (�) and F (�) 6= � (sin
e F (�) 6� H(�)

and � is the least element in the set f0; 1; �g). The impli
ation 3.5)3.4 is proved.

Remark 1. All the separation problems F de�ning 
omplexity 
lasses studied in the

literature have the following property. If in the de�nition of the 
lass POLY(F )

we add the extra requirement jf(x)j = 2

poly(jxj)

, (the de�nition of polynomial weak


omputability implies only that jf(x)j � 2

poly(jxj)

), then the 
lass POLY(F ) does

not 
hange. Moreover, all those problems F have the following property. For a

separation problem F , de�ne the new separation problem

�

F (�) =

�

F (�); if j�j has the form 2

k

, k 2 N

�; otherwise.

Then for all the 
lasses studied in the literature, the 
orresponding separation

problems F satisfy the following 
ondition:

(3.7) F 2 LOGS(

�

F ):

Note that (3.7) implies POLY

A

(

�

F ) = POLY

A

(F ) for all A (by Theorem 1).

If a separation problem F has the property (3.7), then the 
onditions 3.3, 3.4,

and 3.5 are equivalent to the 
ondition

3.8 EXP

A

(F ) � EXP

A

(G) for all A,

where EXP

A

(H) is the 
lass 
ontaining all the languages L su
h that L(x) =

H(g(x)) for some fun
tion g weakly exponential relative to A.

Indeed, the impli
ation 3.4)3.8 is true be
ause if f(�) is a weakly polylog-

arithmi
 fun
tion and g(x) is a fun
tion weakly exponential relative to A, then

the fun
tion f(g(x)) is weakly exponential relative to A (be
ause polylog(2

2

O(n)

) =

poly(2

O(n)

) = 2

O(n)

). Conversely, let us prove the impli
ation 3.8)3.4. Let F have

the property (3.7) and let 3.4 be false. Then

�

F 62 LOGS(G). Applying the same

arguments as those in the proof of impli
ation :3.4) :3.5, we 
an 
onstru
t an

ora
le A su
h that the language L

A

= fn j F (A

2

n

) = 1g is in EXP

A

(F )nEXP

A

(G).

Let us 
all a mapping A 7! POLY

A

(F ) the manifold generated by F . In general,

any mapping from the set of all ora
les into the set of families of languages will

be 
alled a manifold. For a family F of separation problems, de�ne the manifold

POLY

A

(F) =

S

F2F

POLY

A

(F ). De�ne LOGS(F) =

S

F2F

LOGS(F ).

It is easy to see that Theorem 1 
an be generalized to families of separation

problems.

Corollary 1. If all the elements of a family F of separation problems have the

property 3.1 and all the elements of a family G of separation problems have the

property 3.2, then the following are equivalent:

3.8 LOGS(F) � LOGS(G)

3.9 POLY

A

(F) � POLY

A

(G) for all A.

Any manifold of the form POLY

A

(F), where F is a family of non-degenerate

separation problems, is 
alled regular and is 
alled strongly regular if F is one-

element. Corollary 1 implies that a regular manifold POLY

A

(F ) de�nes family F
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uniquely up to the weak polylogarithmi
 equivalen
e, that is,

(8A POLY

A

(F) = POLY

A

(G)) () LOGS(F) = LOGS(G):

This is not true for absolute 
lasses: there exist separation problems F

1

and F

2

su
h

that POLY(F

1

) = POLY(F

2

) and LOGS(F

1

) 6= LOGS(F

2

). In other words, there

exists a nonrelativizable assertion of the form POLY(F

1

) = POLY(F

2

), namely

the assertion IP = PSPACE proven by Shamir in [Sh 90℄. Both the 
lasses IP

and PSPACE 
an be de�ned in our framework as shown in x7.

Consider the following appli
ation of Theorem 1 (it appeared in fa
t in [BGS

75℄). Suppose we wish to prove that there exists an ora
le A su
h that P

A

6= NP

A

.

A

ording to Theorem 1, it is enough to prove that F

NP

is not in PLOG. In other

words, we have to prove that no ma
hine 
an in time polylogarithmi
 of j�j re
ognize

if one o

urs in �. Assume that a polylogarithmi
-time ma
hine M re
ognizes

whether one o

urs in �. Run the ma
hine M on the input word 
ontaining only

zeros and long enough (its length n should be greater than the running time of M

on words of length n; su
h an n does exist be
ause n � polylog(n) ! +1). The

output of the ma
hine should be 0. But sin
e M had not queried at least one bit

of �, we 
an fool it by 
hanging that bit of � to 1.

In this proof we have used only that the number of bits queried by the ma
hine

M working on input � is restri
ted by a polylogarithm of j�j, and the running

time 
an be arbitrary large. This is true for all the known proofs of the results of

the form 9A K

A

1

6� K

A

2

. Let us formalize this 
laim. Repla
e in the De�nition 1

the restri
tions for time with the restri
tions for the number of queried bits of x

and denote by n.u.LOGS(G) the 
lass obtained from the 
lass LOGS(G) after this

repla
ement. Then to prove that 9A POLY

A

(F ) 6� POLY

A

(G) it is suÆ
ient to

prove that F is not in n.u.LOGS(G) be
ause n.u.LOGS(G) � LOGS(G). Assertions


on
erned with the number of queries 
an be usually proved by 
ounting arguments.

Let us give the formal de�nition of the 
lass n.u.LOGS(F ) using another model

of 
omputation, namely, de
ision trees.

Let x

1

; : : : ; x

n

be boolean variables and let M be a set. An (M;x

1

; : : : ; x

n

)-tree

is a �nite binary rooted tree whose leaves are labeled by elements of M , whose

internal verti
es are labeled by variables from the set fx

1

; : : : ; x

n

g, and for every

internal vertex, one of the two edges going from that vertex to its sons is labeled by

0 and the other is labeled by 1. An (M;x

1

; : : : ; x

n

)-tree T 
omputes the fun
tion

f : B

n

!M de�ned as follows. Let b

1

: : : b

n

belong to B. Evidently, there exists a

single path in the tree starting at the root and going to a leaf su
h that for every

pair hu; vi of 
onsequent verti
es in this path if u is labeled by x

i

, then the edge

hu; vi is labeled by b

i

. The value f(b

1

: : : b

n

) is de�ned as the label of the end leaf

in this path. We will denote the de�ned fun
tion by the same letter as the tree

itself, i.e., T (x

1

: : : x

n

). The 
omplexity of a tree is de�ned as its height.

A partial fun
tion f : B

n

! M is 
omputable in t queries if there exists an

(M;x

1

; : : : ; x

n

)-tree T of height at most t su
h that the fun
tion T (x

1

; : : : ; x

n

) ex-

tends the fun
tion f(x

1

: : : x

n

). Repla
e in De�nition 1 the notion of 
omputability

in time t(jxj) with the notion of 
omputability in t(jxj) queries. The resulting

notion is 
alled the non-uniform weak 
omputability in time t(n).

De�nition 3. n.u.LOGS(G) is the 
lass of all the separation problems F su
h that

F (�) � G(f(�)) for some non-uniform weakly polylogarithmi
 fun
tion f and for

all � 2 B

�

.
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Evidently, LOGS(G) � n.u.LOGS(F ), and we obtain an easy 
orollary from

Theorem 1.

Corollary 2. If

(3.11) F =2 n.u.LOGS(G);

then the negation of 3.5 is true.

It is the assertion (3.11) that is proved by 
ounting arguments in all the known

proofs of theorems of the form

9A POLY

A

(F ) 6� POLY

A

(G):

4. The 
riterion of relativizable existen
e of

an m-
omplete language in a 
omplexity 
lass

Denote the polynomial many-one redu
ibility (Karp redu
ibility) by �

p

m

. Re
all

that L

1

�

p

m

L

2

if there exists a polynomial-time 
omputable fun
tion f su
h that

x 2 L

1

, f(x) 2 L

2

. If we allow the fun
tion f to by 
omputable by a polynomial-

time ma
hine with an ora
le A, then the resulting redu
ibility is denoted by �

p;A

m

.

Let � stand for a redu
ibility on separation problems. We say that a separation

problem H is �-hard for a 
lass K of separation problems if any separation problem

in K is �-redu
ible to H . If H is �-hard for K and H is in K, then we say that H

is �-
omplete in K. Call a 
lass K

1

of separation problems �-hard for a 
lass K

2

of separation problems, if K

1

has a problem being �-hard for K

2

.

The following theorem gives a 
riterion of whether the 
lass POLY

A

(G) is �

p;A

m

-

hard for the 
lass POLY

A

(F ) for all ora
les A. To make its formulation more

natural let us introdu
e the notion of weak polylogarithmi
 redu
ibility, whi
h is

denoted by �

l

m

. We say that F �

l

m

G if F 2 LOGS(G), that is, redu
ing fun
tions

are the polylogarithmi
 ones. It is easy to see that the relation �

l

m

is re
exive

and transitive and that every separation problem F is �

l

m

-
omplete in the 
lass

LOGS(F ). We say that a separation problem G solves a separation problem F if

F (x) � G(x) for all x 2 B

�

.

Theorem 2. If a separation problem F satis�es the 
ondition 3.1 and a separation

problem G satis�es the 
ondition 3.2, then the following are equivalent:

4.1 LOG(G) �

l

m

-hard for LOGS(F ),

4.2 F has a solution in LOG(G),

4.3 the 
lass POLY

A

(G) is �

p;A

m

-hard for the 
lass POLY

A

(F ) for any ora
le

A.

If F is a language, then all these assertions are equivalent to the assertion:

4.4 the 
lass LOG(G) is �

l

m

-hard for the 
lass LOG(F ).

Proof. Let us prove the impli
ation 4.1)4.2. Assume that 4.1 is true, that is, there

exists a separation problem H 2 LOGS(G) su
h that any separation problem in

the 
lass LOGS(F ) is �

l

m

-redu
ible to H . Then F �

l

m

H . Let g : B

�

! B

�

be

a fun
tion redu
ing F to H . Then the language H(g(�)) solves F and belongs to

LOG(G).

Let us prove the impli
ation 4.2)4.1. Assume that a language H 2 LOG(G)

solves F . Then the language H is �

l

m

-hard for the 
lass LOGS(F ) be
ause the

problem F is �

l

m

-
omplete in LOGS(F ).



RELATIVIZABLE AND NONRELATIVIZABLE THEOREMS 11

Evidently, 4.1 implies 4.4. The impli
ation 4.4)4.2 in the 
ase when F is a

language 
an be proved just as the impli
ation 4.1)4.2 is proved be
ause F 2

LOG(F ) in this 
ase.

Let us prove the impli
ation 4.2)4.3.

Let F have a solution H 2 LOG(G). Assume that A � B

�

. Theorem 1 implies

that POLY

A

(F ) � POLY

A

(H) � POLY

A

(G) (note that in the proof of the impli-


ation 3.4)3.5 we did not used 
onditions 3.1 and 3.2). Therefore, it suÆ
es to

prove that the 
lass POLY

A

(H) is �

p;A

m

-hard for the 
lass POLY

A

(F ). In fa
t, we

will prove that the 
lass POLY

A

(H) has an �

p

m

-
omplete language. Let g

A

0

, g

A

1

,

g

A

2

, : : : be an enumeration of all the fun
tions being weakly polynomial relative to

A. Set L

A

i

(x) = H(g

A

i

(x)). By de�nition, POLY

A

(H) = fL

A

i

j i 2 Ng.

Let p

i

(jxj) be a polynomial upper bound for the time of weak 
omputation of

the fun
tion g

A

i

(x) given

�

i�x. We will prove that there exists a fun
tion f

A

weakly

polynomial relative to A su
h that f

A

(

�

i�x0

p

i

(jxj)

) = g

A

i

(x) for all i 2 N and for

all x 2 B

�

Suppose that we have already proved the existen
e of su
h a fun
tion

f

A

. Then let L

A

(u) = H(f

A

(u)). By de�nition, L

A

2 POLY

A

(H). On the other

hand, L

A

is �

p

m

-
omplete in the 
lass POLY

A

(H) be
ause for all i 2 N the fun
tion

x 7!

�

i�x0

p

i

(jxj)

is polynomial-time 
omputable and redu
es L

A

i

to L

A

.

Let us prove the existen
e of su
h a fun
tion f

A

. Let M

A

be a ma
hine that in

time p

i

(jxj) 
omputes the length of the word g

A

i

(x) for any given

�

i�x, and let N

A

be a ma
hine that in time p

i

(jxj) 
omputes the jth bit of the word g

A

i

(x) for any

given

�

i�xj. Then the length of the word f

A

(w) 
an be 
omputed by the following

ma
hine

�

M

A

: for given word w 
he
k �rst whether w has the form

�

i�x0

t

, and if not,

output 0. Otherwise �nd i, x, and t and run M

A

on

�

i�x. If ma
hine M

A

produ
es

a result within time t, then output that result, otherwise output 0. The following

ma
hine

�

N

A

outputs the jth bit of the word f

A

(w) for any given hw; ji: run �rst

�

M

A

on w, let n stand for the result produ
ed by

�

M

A

. If n = 0, then output 0.

Otherwise �nd i, x, and t su
h that w =

�

i�x0

t

and run N

A

on

�

i�xj. If the ma
hine

N

A

produ
es a result within time t, then output that result. Otherwise output 0.

Let us prove that if 4.2 is false, then 4.3 is false. Assume that F has no solutions

in the 
lass LOG(G). Let us 
onstru
t an ora
le A su
h that the 
lass POLY

A

(G)

has no �

p;A

m

-hard language for the 
lass POLY

A

(F ). Let f

A

0

, f

A

1

, : : : , f

A

i

, : : : be

an enumeration of all the fun
tions being weakly polynomial relative to ora
le A

and let m

A

0

, m

A

1

, : : : , m

A

j

, : : : be an enumeration of all the �

p;A

m

-redu
ing fun
tions

(that is, all the fun
tions of the type B

�

! B

�

being polynomial relative to A).

Assume that A � B

�

. Call the language A

i

= fx j

�

ix 2 Ag the ith 
omponent of A

and denote by L

i

(A) the language fn j F ((A

i

)

n

) = 1g. Re
all that for C � B

�

C

n

stands for the word of length n, whose jth bit is equal to C(�nj). It's 
lear that it

suÆ
es to 
onstru
t an ora
le A su
h that for all i 2 N, at least one of the following

two assertions is true:

(L

i

1

) G(f

A

i

(y)) = � for some y 2 B

�

;

and

(�) the language L

i

(A) is in POLY

A

(F ) and is not �

p;A

m

-redu
ible to the sepa-

ration problem G(f

A

i

(y)).

The 
ondition (L

1

i

) is lo
al, therefore we denote it by (L

1

i

). To make the 
ondition

(�) true it suÆ
es to ensure one global 
ondition

(G

i

) F ((A

i

)

n

) 6= � for all n 2 N
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and the following 
ountable family of lo
al assertions

(L

2

ij

) 9n 2 N F ((A

i

)

n

) 6= G(f

A

i

(m

A

j

(1

n

))); j 2 N:

Thus we have to 
onstru
t an ora
le A su
h that for all pairs (i; j) 2 N

2

at least

one of the two assertions (L

1

i

) and (G

i

)&(L

2

ij

) is true.

Let us start with the ora
le A being a polynomial-time de
idable language su
h

that for all i the assertion (G

i

) is true. Then we �x an enumeration of the set N

2

and make 
ountable number of steps enumerated by pairs (i; j). During the step

(i; j) we rede�ne the ith 
omponent of A on a �nite number of words to make the

assertion ( L

1

i

) or the assertion (L

2

ij

) true. Evidently, if for some i there exists j

su
h that we have satis�ed the 
ondition (L

1

i

) on the step (i; j), then we 
an skip

the remaining steps (i; j

0

). On ea
h step we will �x the value of A on some words.

Let us explain what we do during the step number (i; j). Let A be the ora
le we

have after the previous step (with a �nite set of �xed values). Consider two 
ases:

1st 
ase: it is possible to 
hange non-�xed values of the ith 
omponent of A to

make (L

1

i

) true. Evidently, in this 
ase it is enough to rede�ne only a �nite number

of non-�xed values of A

i

to make (L

1

i

) true. Make those 
hanges of A

i

and �x a

�nite number of values of A to guarantee the truth of (L

1

i

). Sin
e A

i

0

is not 
hanged

for all i

0

6= i, all the assertions (G

i

0

) for all i

0

6= i remain true.

2nd 
ase: for any 
hanges of non-�xed values of A

i

the assertion (L

1

i

) remains

false. Assume that � 2 B

�

. Let B � B

�

stand for the ora
le su
h that B

i

0

= A

i

0

for i

0

6= i and B

i

= (A

i

)[�℄ (let us remind that the notation C[�℄ is de�ned in the

proof Theorem 1). Denote B by A[�; i℄. Consider the language

H = f� 2 B

�

j G(f

A[�;i℄

i

(m

A[�;i℄

j

(j�j))) = 1g:

Let us prove that H 2 LOG(G). Call � 2 B

�

free if no value of A on a word of the

form j�ji, i � j�j, is �xed (that is, we 
an repla
e A with A[�; i℄ without 
hanging

�xed values). Note that the set of non-free values is �nite. For all the free � we

have G(f

A[�;i℄

i

(y)) 6= � for all y 2 B

�

. In parti
ular, G(f

A[�;i℄

i

(m

A[�;i℄

j

(j�j))) 6= �

for any free �. The fun
tion � 7! f

A[�;i℄

i

(m

A[�;i℄

j

(j�j)) is weakly polylogarithmi


(be
ause A is obtained from a polynomial-time de
idable language by 
hanging

�nite number of values). Therefore the fun
tion

g(�) =

8

>

<

>

:

f

A[�;i℄

i

(m

A[�;i℄

j

(j�j)) if � is free,

one

G

if � is not free and � 2 H ,

zero

G

if � is not free and � 62 H ,

is weakly polylogarithmi
, and H(�) = G(g(�)) for all � 2 B

�

. Hen
e H 2

LOG(G).

Thus, there exist in�nitely many � su
h that F (�) 6� H(�). Pi
k a free � su
h

that F (�) 6� H(�). Then for n = j�j we have

F (((A[�; i℄)

i

)

n

) = F (�) 6� H(�) = G(f

A[�;i℄

i

(m

A[�;i℄

j

(n))):

Repla
e A with A[�; i℄ and �x all the values of A whi
h the value of f

A

i

(m

A

j

(n))

depends on, and �x the values of A on all the words of the form

�

i�nj, j � n. Thus we

have made the assertion (L

2

ij

) true. And the assertion (G

i

) was not injured be
ause

F (�) 6= �. Sin
e we have rede�ned only ith 
omponent of A all other assertions of

the form (G

i

0

) were not injured.

The impli
ation 4.3)4.2 is proved.
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Corollary 3. If F is a language, then the 
lass POLY

A

(F ) has a �

p

m

-
omplete

language.

Remark 2. It is 
lear from the proof of Theorem 2 that in the 
ondition 4.3, we 
an

repla
e the �

p;A

m

-redu
ibility by the �

p

m

-redu
ibility.

Remark 3. It is 
lear from the proof of Theorem 2 that for any sequen
e fhF

i

; G

i

ig,

i = 0; 1; 2; : : : of pairs of separation problems su
h that F

i

has no solution in

LOG(G

i

), we 
an 
onstru
t an ora
le A su
h that the 
lass POLY

A

(G

i

) is not �

p;A

m

-

hard for the 
lass POLY

A

(F

i

) for all i. To do so we have to 
onsider for all i the


ountable number of 
omponents A

i;j

= fx 2 B

�

j

�

i

�

jx 2 Ag, j 2 N. The same is

true for Theorem 1 and for Theorems 3 and 4 below. We 
an also 
onstru
t an ora
le

relative to whi
h negative assertions of di�erent types are true simultaneously. For

example, if for all i there exists an ora
le A

i

su
h that POLY

A

i

(F

i

) 6� POLY

A

i

(G

i

)

and for all j there exists an ora
le B

j

su
h that the 
lass POLY

B

j

(H

j

) is not �

p;B

j

m

-

hard for the 
lass POLY

B

j

(J

j

), then there exists a single ora
le A relative to whi
h

all these assertions are true.

Corollary 4. If for nondegenerate separation problems F and G the assertion

(4.5) Fhas no solution in the 
lass n.u.LOGS(G);

is true, then there exists an ora
le A su
h that the 
lass POLY

A

(G) has no �

p;A

m

-

hard language for the 
lass POLY

A

(F ).

The assertion (4.5) is the assertion usually proved by 
ounting arguments when

one proves that there exists A su
h that the 
lass POLY

A

(G) is not �

p;A

m

-hard for

the 
lass POLY

A

(F ).

Example. In [N 89℄, it was proved that n.u.BPPLOG = n.u.PLOG. Obviously,

the separation problem F

R

de�ning the 
lass R has no solution in the 
lass n.u.PLOG.

Consequently, there exists an ora
le A su
h that the 
lass BPP

A

has no �

p;A

m

-hard

language for the 
lass R

A

.

Remark 4. If we repla
e in the statement of Theorem 2 the separation problems F

and G by 
ountable 
lasses F and G of separation problems then the impli
ation

4.3)4.1 remains true. To keep the impli
ation 4.1)4.3 true, we have to strengthen

the 
ondition 4.1 as follows. Repla
e the 
ondition 4.1 by the following 
ondition:

\there exist a language H in LOG(G) and a 
omputable fun
tion f(i; �) su
h that

for any �xed i the fun
tion � 7! f(i; �) is weakly polylogarithmi
 and redu
es the

ith separation problem in F to H".

5. A 
riterion of whether a 
omplexity 
lass is

Turing redu
ible to another 
omplexity 
lass

Denote by �

p

T

the polynomial Turing redu
ibility (Cook redu
ibility) and denote

by �

p;A

T

the polynomial Turing redu
ibility relative to ora
le A. Re
all that L

1

�

p;A

T

L

2

if there exists a polynomial-time Turing ma
hine M having two ora
les A and L

2

and re
ognizing L

1

.

Let � stand for some type of redu
ibility. Let us 
all a 
lass K

1

to be �-redu
ible

to a 
lass K

2

(notation: K

1

� K

2

) if 8L

1

2 K

1

9L

2

2 K

2

L

1

� L

2

.
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To formulate a theorem giving a 
riterion of whether K

1

�

p;A

T

K

2

for all ora
les A

we de�ne the polylogarithmi
 version of polynomial-time Turing redu
ibility, whi
h

is more 
exible 
ompared with the polylogarithmi
 many-one redu
ibility.

A separation problem F is weakly polylogarithmi
 T-redu
ible to a separation

problem G (F �

l

T

G in symbols) if there exist a polynomial-time Turing ora
le

ma
hine M and a fun
tion f : B

�

� B

�

! B

�

su
h that 1) the value f(y; �) 
an

be weakly 
omputed in time poly(jyj + log j�j) for given y and � and 2) for all

� 2 D(F ) the following two assertions are true:

G(f(y; �)) 6= � for all y 2 B

�

;(5.1)

F (�) = M

G(f(�;�))

(j�j);(5.2)

where G(f(�; �)) stands for the language fy 2 B

�

j G(f(y; �)) = 1g.

We 
all a pair hM; fi a pair redu
ing F to H if the 
onditions (5.1) and (5.2)

are true for all � 2 D(F ). Note that if there exists a pair hM; fi su
h that the


onditions (5.1) and (5.2) are true for all but �nitely many � 2 D(F ), then F �

l

T

G.

We denote by hM; fi

G

(�) the output of M on input j�j with ora
le G(f(�; �)).

Obviously, the binary relation �

l

T

is re
exive and transitive. It is 
lear that

F �

l

m

G) F �

l

T

G.

Theorem 3. If a separation problem F satis�es the 
ondition 3.1 and a separation

problem G satis�es the 
ondition 3.2, then the following are equivalent:

5.3 LOGS(F ) �

l

T

LOGS(G),

5.4 F �

l

T

G,

5.5 POLY

A

(F ) �

p;A

T

POLY

A

(G) for all ora
les A.

If F is a language, then all three assertions are equivalent to the assertion

5.6 LOG(F ) �

l

T

LOG(G).

Proof. Evidently, the 
onditions 5.3 and 5.4 are equivalent.

Assume that F is a language. Then the impli
ation 5.6)5.4 is true. On the

other hand, assume that 5.6 is true, that is, F �

l

T

G. Let hM; fi be a pair redu
ing

F to G. Let l(n) be a polylogarithmi
 upper bound for the length of queries to

ora
le made by M on the input n 2 N. Consider the language H = f�x� j jxj �

l(j�j); G(f(x; �)) = 1g. Let us prove that H belongs to LOG(G). Sin
e D(F ) = B

�

,

we have G(f(x; �)) 6= � for all x; � 2 B

�

. Therefore, H(�) = G(h(�)), where

h(�) =

�

f(x; �) if � = �x�; x � l(j�j);

zero

G

if � has not the form �x�, where x � l(j�j).

For a given � we 
an de
ide in time polylog(j�j) if � has the form �x�, jxj � l(j�j).

Consequently, h is a weakly polylogarithmi
 fun
tion, hen
e, we haveH 2 LOG(G).

Set g(x; �) = �x�. Obviously, g(x; �) 
an be weakly 
omputed in time poly(jxj+

log j�j). The pair hM; gi redu
es F to H , therefore fFg �

l

T

LOG(G). As F is

�

l

m

-
omplete in LOG(F ), we obtain LOG(F ) �

l

T

LOG(G).

Let us prove that 5.4 implies 5.5. Assume that F �

l

T

G. Denote by hM; fi a pair

redu
ing F to G. Let A be an ora
le and let L a language in the 
lass POLY

A

(F ).

Let g be a weakly polynomial relative to A fun
tion su
h that L(x) = F (g(x)). Then

L(x) = M

G(f(�;g(x)))

(jg(x)j) for all x 2 B

�

. Sin
e the fun
tion jg(x)j is polynomial-

time 
omputable relative to A, the language L is �

p;A

T

-redu
ible to the language
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f�yg(x) j G(f(y; g(x))) = 1g, whi
h is in POLY

A

(G) be
ause G(f(y; g(x))) 6= � for

all x; y 2 B

�

and the fun
tion �yx 7! f(y; g(x)) is weakly polynomial relative to A.

Let us prove the impli
ation :5.4) :5.5. Assume that F 6�

l

T

G. Let us prove

that 5.5 is false. Note that in the assertion 5.5 the �

p;A

T

-redu
ibility 
an be repla
ed

by the �

p

T

-redu
ibility. Indeed, if a language L

1

is �

p;A

T

-redu
ible to a language L

in POLY

A

(G), then L

1

is �

p

T

-redu
ible to the language L�A = f0x j x 2 Lg[f1x j

x 2 Ag, whi
h is in POLY

A

(G) (be
ause A 2 POLY

A

(G) provided G satis�es the


ondition 3.2 and the 
lass POLY

A

(G) is 
losed under the operation � for any A

and G).

It suÆ
es to 
onstru
t an ora
le A su
h that the following two 
onditions are

true:

(G) A

n

2 D(F ) for all n,

and

(L) the language fn j F (A

n

) = 1g is not �

p

T

-redu
ible to any language in

POLY

A

(G).

Let M

B

1

, M

B

2

, : : : , M

B

j

, : : : be an enumeration of all the polynomial-time ora
le

Turing ma
hines. Let f

A

1

(x), f

A

2

(x), : : : , f

A

i

(x), : : : be an enumeration of all the

weakly polynomial relative to A fun
tions. We want to 
onstru
t an ora
le A su
h

that the following assertion (L

ij

) is true for all i; j 2 N:

(L

ij

) 9n 2 N F (A

n

) 6= M

G(f

A

i

(�))

j

(n) _ 9y G(f

A

i

(y)) = �:

At �rst, let A be equal to a polynomial-time de
idable language satisfying the


ondition (G). Make ! steps enumerated by pairs (i; j) 2 N

2

.

Step (i; j). Let A be the ora
le (�x values in
luded) we have after the previous

step. Call � 2 B

�

free if no value of A on a word of the form j�jk, k � j�j is �xed.

Consider two 
ases.

1st 
ase: there exist free � 2 D(F ) and y 2 B

�

su
h that F (�) 6= � and

G(f

A[�℄

i

(y)) = �. Then repla
e A by A[�℄ and �x �nite number of values of A to

guarantee the validity of the assertion (L

ij

). Note that the 
ondition (G) has not

been injured.

2nd 
ase: G(f

A[�℄

i

(y)) 6= � for all y 2 B

�

for all free � 2 D(F ). Let us prove

that there exists a free � 2 D(F ) su
h that F (�) 6= M

G(f

A[�℄

i

(�))

j

(j�j). Indeed,

otherwise F (�) = M

G(f

A[�℄

i

(�))

j

(j�j) for all � 2 D(F ). Then the fun
tion g(y; �) =

f

A[�℄

i

(y) is weakly 
omputable in time poly(jyj + log j�j) and for the pair hM; gi

the 
onditions (5.1) and (5.2) are ful�lled for all the free � 2 D(F ). Therefore,

F �

l

T

G and we get a 
ontradi
tion. After that the proof goes similar to the proof

of Theorem 1.

6. The 
riterion of whether a 
omplexity 
lass has

Turing hard language for another 
omplexity 
lass

Theorem 4. If a separation problem F satis�es the 
ondition 3.1 and a separation

problem G satis�es the 
ondition 3.2, then the following are equivalent:

6.1 the 
lass LOG(G) is �

l

T

-hard for the 
lass LOGS(F ),

6.2 the 
lass LOG(G) has a language whi
h F is �

l

T

-redu
ible to,
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6.3 the 
lass POLY

A

(G) is �

p;A

T

-hard for the 
lass POLY

A

(F ) for all ora
les

A.

If F is a language, then all the three assertions are equivalent to the assertion

6.4 LOG(G) is �

l

T

-hard for LOG(F ).

Proof. Evidently, the assertions 6.1 and 6.2 are equivalent and if F is a language,

then they both are equivalent to the assertion 6.4.

Let us prove the impli
ation 6.2)6.3. Assume that F �

l

T

H 2 LOG(G). If H

does not satisfy the 
ondition 3.2, then F 2 PLOG and therefore the assertion 6.3 is

true. Otherwise, Theorem 2 implies that for any ora
le A the 
lass POLY

A

(H) has

a �

p

m

-
omplete language. Theorem 3 implies that POLY

A

(F ) �

p;A

T

POLY

A

(H),


onsequently, the 
lass POLY

A

(G) is �

p;A

T

-hard for the 
lass POLY

A

(F ).

Let us prove that the assertion 6.3 implies the assertion 6.2. Similar to Theo-

rem 4, we 
an repla
e �

p;A

T

-redu
ibility by the �

p

T

-redu
ibility in 6.3.

Assume that 6.2 is false, that is, F is �

l

T

-redu
ible to no language in the 
lass

LOG(G).

We 
onstru
t an ora
le A su
h that the 
lass POLY

A

(G) has no language being

�

p

T

-hard for the 
lass POLY

A

(F ). Let f

A

0

(y), f

A

1

(y), : : : , f

A

i

(y), : : : be an enumer-

ation of all the weakly polynomial relative to A fun
tions. Split A into 
omponents

A

i

= fx j

�

ix 2 Ag. It suÆ
es to de�ne A in su
h a way that for any i 2 N at least

one of the following two assertions holds:

(L

1

i

) G(f

A

i

(y)) = � for some y 2 B

�

,

and

(�) the language L

i

(A) = fn j F (A

i

n

) = 1g is in the 
lass POLY

A

(F ) and is not

�

p

T

-redu
ible to the separation problem G(f

A

i

(y)).

Let M

L

0

, M

L

1

, : : : , M

L

j

, : : : be an enumeration of all the polynomial-time ora
le

Turing ma
hines.

To make the assertion (�) true it suÆ
es to satisfy the following requirement

(G

i

):

(G

i

) F (A

i

n

) 6= � for all n,

and at the same time to satisfy the following 
ondition (L

2

ij

) for all j 2 N:

(L

2

ij

) 9n 2 N F (A

i

n

) 6= M

G(f

A

i

(�))

j

(n):

To 
onstru
t an ora
le A satisfying (L

1

i

) or (G

i

)&(L

2

ij

) for all pairs (i; j) we 
an

follow the proof of Theorem 2. The only di�eren
e appears in the se
ond 
ase

when the step (i; j) is des
ribed. Re
all that in the se
ond 
ase G(f

A

i

(y)) 6= � for

all y 2 B

�

and for all variations of non-�xed values of A

i

. We 
all a word � 2 B

�

free if no value of A

i

on a word of the form j�jj, j � j�j, is �xed. We have to prove

that there exists a free � 2 D(F ) su
h that F (�) 6= M

G(f

A[�;i℄

i

(�))

j

(j�j). Assume

that there exists no su
h �. Denote by l(n) a polylogarithmi
 upper bound for the

length of queries made by the ma
hine M on input n. Consider the language

H = f�y� : jyj � l(j�j); G(f

A[�;i℄

i

(y)) = 1g

and the fun
tion g(y; �) = �y�. Sin
e G(f

A[�;i℄

i

(y)) 6= � for all free � and for all

y 2 B

�

, the language H is in LOG(G). Then for the pair hM

j

; gi assertions (5.1)

and (5.2) are true for all free � 2 B

�

. Therefore, F �

l

T

H . This 
ontradi
tion

�nishes the proof.
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Corollary 5. If F 6�

l

T

n.u.LOG(G), then there exists an ora
le A su
h that the


lass POLY

A

(G) is not �

p;A

T

-hard for the 
lass POLY

A

(F ).

Remark 5. Let K

1

, K

2

be 
lasses of languages and let A be an ora
le. In the paper

[A-S 86℄ it is noted that if the 
lass K

2

is downward 
losed under �

p;A

T

-redu
tions,

then the 
lass K

2

is �

p;A

T

-hard for a 
lass K

1

if and only if K

2

is �

p

m

-hard for

K

1

. Indeed, suppose that L is a language in K

2

whi
h all the languages in K

1

are

�

p;A

T

-redu
ible to. Then 
onsider the language

L

1

= f

�

i�x0

t

jM

A;L

i

on input x outputs 1 in � t stepsg;

where M

0

, M

1

, : : : is a numeration of polynomial-time Turing ma
hines having two

ora
les. All the languages in the 
lass K

1

are �

p

m

-redu
ible to L

1

. On the other

hand, L

1

�

p;A

T

L, hen
e, L

1

2 K

2

holds.

7. Relativizable in
lusions between parti
ular 
omplexity 
lasses

In this se
tion we 
onsider many of the regular manifolds lying between P

A

and

PSPACE

A

(the only ex
eption is the manifold Few

A

; the author does not know

whether this manifold is regular). As it was mentioned in Corollary 1, all the

parti
ular 
omplexity 
lasses studied in the literature 
an be generated by means

of separation problems whi
h are not equal to � only on the words of length 2

n

,

n 2 N. To simplify the notation, we 
onsider in the sequel only separation problems

satisfying this requirement. Denote B

2

n

by F

n

and

S

1

i=0

F

n

by F. We enumerate

the bits of a word � 2 F

n

by binary words of length n rather than by the numbers

from 1 to 2

n

. For a word � in F by k�k we mean log

2

j�j. We 
all k�k the norm of

�. While de�ning parti
ular separation problems we keep the following agreement:

if the problem under 
onsideration is de�ned only on a set M � B

�

, then its value

on all the words from B

�

nM is equal to � (that is, the default value is �).

Consider the following relativized 
omplexity 
lasses: UP

A

, Co-UP

A

, UP

A

\

Co-UP

A

, FewP

A

, Co-FewP

A

, FewP

A

\Co-FewP

A

, Few

A

, �P

A

, R

A

, Co-R

A

, R

A

\

Co-R

A

, NP

A

, Co-NP

A

, NP

A

\Co-NP

A

, BPP

A

, MA

A

, Co-MA

A

, MA

A

\Co-MA

A

,

AM

A

, Co-AM

A

, AM

A

\ Co-AM

A

, PP

A

, �

A

k

, �

A

k

, �

A

k

\ �

A

k

(k � 2), IP

A

, Co-IP

A

,

IP

A

\ Co-IP

A

, PH

A

, PSPACE

A

.

Below we remind the de�nitions of some 
omplexity 
lasses from this list and

give some 
omments.

1. UP

A

is the manifold generated by the following separation problem:

F

UP

(�) =

8

>

<

>

:

1; if #

1

(�) = 1,

0; if #

1

(�) = 0,

�; otherwise.

2. FewP

A


 POLY

A

(F), where F 
onsists of all the separation problems F

su
h that

F (�) =

8

>

<

>

:

1; if 0 < #

1

(�) � p(k�k),

0; if #

1

(�) = 0,

�; otherwise,

where p is a polynomial.
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3. Few

A

is the 
lass de�ned in the paper [CH 90℄ as follows:

a language L is in the 
lass Few

A

if there exist a fun
tion f

A

being weakly polyno-

mial relative to A, a polynomial q and a predi
ate R

A

de�ned on the set B

�

�N

being polynomial-time 
omputable relative to A, su
h that L(x) = R

A

(x;#

1

f

A

(x))

and #

1

(f

A

(x)) � q(jxj) for all x 2 B

�

. It is unknown if the manifold Few

A

is reg-

ular.

4. �P

A


 POLY

A

(PARITY), where

PARITY(�) =

�

0; if #

1

(�) is even,

1; otherwise.

5. AM

A

is the abbreviation for the 
lass AM[2℄

A

. The 
lass AM

A

is generated

by the following separation problem F

AM

. Let M

d

x 2 M:P (x) mean that jfx 2

M : P (x)gj > d � jM j. Then for � 2 F

2n

,

F

AM

(�) =

8

>

<

>

:

1; if M

2=3

u 2 B

n

9v 2 B

n

�(uv) = 1,

0; if M

2=3

u 2 B

n

8v 2 B

n

�(uv) = 0,

�; otherwise,

where uv stands for the 
on
atenation of words u and v. Denote the 
lass LOGS(F

AM

)

by AMLOGS.

6. MA

A

is the 
lass generated by the separation problem

F

AM

(�) =

8

>

<

>

:

1; if 9u 2 B

n

M

2=3

v 2 B

n

�(uv) = 1;

0; if 8u 2 B

n

M

2=3

v 2 B

n

�(uv) = 0;

�; otherwise,

where � 2 F

2n

.

7. Let us prove that the manifold PSPACE

A

has the form POLY

A

(F ).

It is well known that any language L in PSPACE

A


an be represented as follows:

L = fx j 9y

1

2 B

n

8y

2

2 B

n

� � �Qy

n

2 B

n

P

A

(x; y

1

y

2

� � � y

n

); where n = p(jxj)g;

where P

A

(x; u) is a predi
ate being polynomial-time 
omputable relative to A

and p(m) is a polynomial.

The 
onverse is true, too. Therefore, we 
an take the separation problem

F

PSPACE

(�) =

8

>

<

>

:

1; if there exists n 2 N su
h that k�k = n

2

and

9y

1

2 B

n

8y

2

2 B

n

� � �Qy

n

2 B

n

�(y

1

y

2

� � � y

n

) = 1

0; otherwise.

It is 
lear that POLY

A

(F

PSPACE

) = PSPACE

A

and LOG(F

PSPACE

) is the 
lass of

languages that 
an be re
ognized within polylogarithmi
 spa
e.

8. Let us prove that the manifold IP

A


an be represented in the form POLY

A

(F ).

Take the following separation problem F

IP

: on words � 2 F of length 2

2n

2

it is

de�ned as follows

F

IP

(�) =

8

>

>

>

>

>

<

>

>

>

>

>

:

1; if 9P : B

�

! B

n

Prob [�(r

1

r

2

� � � r

n

P (r

1

)P (r

1

r

2

) � � �P (r

1

r

2

� � � r

n

)) = 1℄ > 2=3;

0; if 8P : B

�

! B

n

Prob [�(r

1

r

2

� � � r

n

P (r

1

)P (r

1

r

2

) � � �P (r

1

r

2

� � � r

n

)) = 1℄ < 1=3;

�; otherwise,
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(where the probability is 
onsidered with respe
t to the uniform distribution in

r

1

� � � r

n

).

Then POLY

A

(F

IP

) = IP

A

.

To explain the intuitive meaning of the de�nition of F

IP

, let us remind the

de�nition of the 
lass IP

A

a

ording to [B 85℄ and 
onvert it to a 
onvenient form.

By a Veri�er we mean a pair V = (q;Q), where Q is a polynomial-time 
omputable

predi
ate on B

�

�B

�

�B

�

and q : N! N is a polynomial. Any fun
tion P : B

�

!

B

�

is 
alled a Prover. Assume that x 2 B

�

, jxj = m. For a sequen
e r

1

; : : : ; r

q(m)

of q(m) words of length q(m), de�ne the answer of (P , V ) on the input x and

random inputs r

1

; : : : ; r

q(m)

as follows. For all i � q(m) set

p

i

= P (r

1

� � � r

i

):

We say that the answer of (P; V ) on input x and random inputs r

1

; : : : ; r

q(m)

is equal

to 1 if lengths of all the words p

i

are equal to q(m) andQ(x; r

1

� � � r

q(m)

; p

1

� � � p

q(m)

) =

1; otherwise answer is equal to 0. Denote the answer of (P; V ) on input x and ran-

dom inputs r

1

; : : : ; r

q(m)

by (P; V )(x)

r

1

���r

q(m)

. We say that a language L belongs

to IP, if there exists a Veri�er V su
h that the following two assertions are true:

8x 2 L 9P Prob [(P; V )(x)

r

1

���r

q(jxj)

= 1℄ > 2=3

8x 62 L 8P Prob [(P; V )(x)

r

1

���r

q(jxj)

= 0℄ > 2=3;

where the probability is 
onsidered with respe
t to the uniform distribution in

r

1

� � � r

q(jxj)

.

If we allow Veri�er to query the ora
le A, then the resulting 
lass is denoted by

IP

A

.

The alternative de�nition of the 
lass IP with private 
oins (see, for example

[GMR 85, GMR 89℄ does not �t into our framework. However, as proven in [GS 86℄,

these two de�nitions are equivalent and the proof of the equivalen
e is relativizable.

A language L is in LOG(F

IP

) if there exists a polylogarithmi
-time Veri�er for

whi
h the above assertion holds. Let us denote the 
lass LOG(F

IP

) by IPLOG.

9. On 
lasses of the form Co-K

A

and K

A

\Co-K

A

. Note that if the manifold K

A

is [strongly℄ regular, then the manifold Co-K

A

= fB

�

n L j L 2 K

A

g is [strongly℄

regular. If K

A

1

, K

A

2

are strongly regular, say K

A

i

= POLY

A

(F

i

), i = 1; 2, then

the manifold K

A

1

\ K

A

2

is strongly regular. Indeed, take the following separation

problem F :

F (�) =

8

>

<

>

:

1; if � = j�

1

j�

1

�

2

;where F

1

(�

1

) = F

2

(�

2

) = 1;

0; if � = j�

1

j�

1

�

2

;where F

1

(�

1

) = F

2

(�

2

) = 0;

�; if � has not su
h form.

Obviously this separation problem F satis�es the following equations: LOG(F ) =

LOG(F

1

)\LOG(F

2

), LOGS(F ) = LOGS(F

1

)\LOGS(F

2

), EXP

A

(F ) = EXP

A

(F

1

)\

EXP

A

(F

2

).

All the known in
lusions between the manifolds under 
onsideration are shown at

Figure 1 (a manifold K

A

1

is in
luded in a manifold K

A

2

if K

A

1

� K

A

2

for all A). That

is, all the known relativizable in
lusions between the 
lasses under 
onsideration

are shown at Figure 1. A line segment 
onne
ts a 
lass K

A

1

with a 
lass K

A

2

if the
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Figure 1. Relativizable in
lusions between 
omplexity 
lasses.


lass K

A

1

is in
luded in the 
lass K

A

2

, and the 
lass K

A

2

is positioned higher than

the 
lass K

A

1

.

7.1 Histori
al referen
es. The nontrivial in
lusions on the Figure 1 were proved

by the following authors.

7.1.1. The assertion MA

A

� �

A

2

\�

A

2

follows from G�a
s' result (published in [S

83℄) stating that BPP

A

� �

A

2

\ �

A

2

. Namely, in [S 83℄ a separation problem G(�)

is 
onstru
ted su
h that G(�) is a solution of F

BPP

and

(7.1) G(�) = 1 () 8y 2 B

p(k�k)

9z 2 B

p(k�k)

Q(�; y; z)

where p is a polynomial and Q is a polylogarithmi
 predi
ate (that is, G 2 �

2

LOG).
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7.1.2. The assertion AM

A

� �

A

2

follows from the 
ited G�a
s' result. However,

for this assertion, it is important that in (7.1) the predi
ate Q(�; y; z) is monotone

in � (that is, if �

0


an by obtained from � be repla
ing some zeros by ones, then

Q(�; y; z) ) Q(�

0

; y; z)).

7.1.3. The assertion MA

A

� AM

A

was proved in [B 85℄.

7.1.4. Few

A

� �P

A

was proved in [CH 90℄.

7.1.5. The assertion MA

A

� PP

A


an be proved rather easily. Besides that,

it easily follows from the assertion PP

BPP

= PP proven in [KSTT 89℄. Indeed,

MA � NP

BPP

� PP

BPP

= PP.

7.1.6. The assertion Few

A

� �

A

2

\ �

A

2

follows from the assertion 8A Few

A

�

p

T

NP

A

, the latter assertion is easy and well known. For the sake of 
ompleteness, let

us prove it here.

As noted, it suÆ
es to prove that 8A Few

A

�

p;A

T

NP

A

. Fix A � B

�

. Assume

that L 2 Few

A

and that L is de�ned by the polynomials p; q and polynomial-time

predi
ates R

A

, Q

A

, that is,

L(x) = R

A

(x;

�

�

fy 2 B

p(jxj)

j Q

A

(x; y)g

�

�

);

�

�

fy 2 B

p(jxj)

j Q

A

(x; y)g

�

�

� q(jxj):

Let us prove that having an NP

A

-
omplete language as ora
le, we 
an 
ompute in

polynomial time for any given x the 
ardinality of the set fy 2 B

p(jxj)

: Q

A

(x; y)g.

The pro
edure is as follows. For a given x, 
he
k �rst if there exists a setM � B

p(jxj)

of 
ardinality exa
tly q(jxj) su
h that 8y 2 M , Q

A

(x; y). This 
an be done by

querying the NP

A

-
omplete language (sin
e jM j is polynomial bounded). If su
h

a set M exists, then

�

�

fy 2 B

p(jxj)

j Q

A

(x; y)g

�

�

= q(jxj). If not, then 
he
k if there

exists a set M � B

p(jxj)

of 
ardinality exa
tly q(jxj)� 1 su
h that 8y 2M Q(x; y).

Repeat this pro
edure q(jxj) times.

7.1.7. The assertion Few

A

� PP

A

was proved in the paper [KSTT 89℄.

7.2 Is Figure 1 
omplete? We 
laim that it is the 
ase, that is, all true relativiz-

able in
lusions are shown at Figure 1. It follows from the twelve assertions listed

below. Namely, all the assertions 9A K

A

1

6� K

A

2

su
h that

K

1

6� K

2

and 8K

0

1

(K

0

1

< K

1

) K

0

1

� K

2

); 8K

0

2

(K

2

< K

0

2

) K

1

� K

0

2

)

are listed, where K

1

< K

2

means that there exists a dire
ted path from the 
lass

K

1

to the 
lass K

2

in the dire
ted graph shown at Figure 1.

1. 9A UP

A

\ Co-UP

A

6� BPP

A

7. 9A AM

A

\ Co-AM

A

6� PP

A

2. 9A R

A

\ Co-R

A

6� �P

A

8. 9A AM

A

6� �

A

2

3. 9A Co-UP

A

6� �IP

A

9. 9A PP

A

6� PH

A

4. 9A FewP

A

\ Co-FewP

A

6� UP

A

10. 9A � P

A

6� PH

A

5. 9A Co-R

A

6� NP

A

11. 9A � P

A

6� PP

A

6. 9A IP

A

\ Co-IP

A

6� PH

A

12. 9A �

A

k

6� �

A

k

for k � 3

7.3 Proving the 
ompleteness of Figure 1. We give the proofs of all the

assertions in the above list whose proofs do not require a lot of spa
e and give

referen
es for all other assertions.

7.3.1 Assertion 9A UP

A

\ Co-UP

A

6� BPP

A

.
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Theorem 5. 9A UP

A

\ Co-UP

A

6� BPP

A

Proof. Let us �x a 
onvenient terminology (being used in other proofs, too). All

the spe
i�
 separation problems G used in the sequel satisfy the following property:

for all F 2 LOGS(G) there exists a weakly polylogarithmi
 fun
tion f su
h

that F (�) � G(f(�)) and kf(�)k depends only on k�k being equal to a

polynomial p(k�k).

Assume that F 2 LOGS(G) and let f be a weakly polylogarithmi
 fun
tion

su
h that F (�) = G(f(�)) and kf(�)k = p(k�k) for all � 2 D(F ), where p is

a polynomial. Then all the words r being elements of the set B

p(k�k)

are 
alled

experts (for f and k�k), and the rth bit of f(�) is 
alled the opinion of r about �.

Let us �x a polylogarithmi
 ma
hine M that 
omputes the rth bit of the word f(�)

for a given � and r 2 B

p(k�k)

. We say that expert r queries �(u) (where u 2 B

k�k

),

if M queries the uth bit of � during the work on the input h�; ri. It is 
lear that

for all � and all r 2 B

p(k�k)

there exists at most poly(k�k) u 2 B

k�k

su
h that

r queries �(u). Call the fra
tion

�

�

fr 2 B

p(k�k)

j r queries �(u)g

�

�

bigm=2

p(k�k)

the

weight of u relative to �. Denote the weight of u relative to � by w

�

(u). If M and p

are not determined by the 
ontext we say \the weight of u relative to � for M , p".

It is easy to prove the following general fa
t:

P

u2B

k�k

w

�

(u) � q(k�k), where q is

the polynomial restri
ting the number of queries of every expert r 2 B

p(k�k)

.

Now let us start with the proof of Theorem 5. By Theorem 1, it suÆ
es to prove

that the separation problem

F (�) =

8

>

<

>

:

1; if � = �
, k�k = k
k, #

1

(�) = 1, #

1

(
) = 0,

0; if � = �
, k�k = k
k, #

1

(�) = 0, #

1

(
) = 1;

�; otherwise.

does not belong to BPPLOGS (evidently, POLY

A

(F ) = UP

A

\ Co-UP

A

).

Assume the 
ontrary: suppose there exist a polynomial p and a polylogarithmi


predi
ate P su
h that 8n 8�; 
 2 F

n

,

#

1

(�) = 1; #

1

(
) = 0 ) M

2=3

r 2 B

p(n)

P (�
; r) = 1

#

1

(�) = 0; #

1

(
) = 1 ) M

2=3

r 2 B

p(n)

P (�
; r) = 0

Let us �x a value of n. Let �

0

2 F

n

, 


0

2 F

n

be the words 
ontaining only

zeros. Without loss of generality we may assume that the fra
tion

�

�

fr 2 B

p(n)

j

P (�

0




0

; r) = 1g

�

�

Æ

2

p(n)

is greater than or equal to 1=2. We shall enumerate bits

in the �rst half � of the word �
 (where �; 
 2 F

n

) by the words of the form 0u,

u 2 B

n

, and bits of the se
ond half 
 by the words of the form 1u. (We follow this

rule in the sequel, too.)

Let the number of queries of experts to �

0




0

be restri
ted by k = poly(n).

Then

P

u2B

n

w

�

0




0

(1u) � k, therefore, there exists u

0

2 B

n

su
h that w

�

0




0

(1u

0

) �

k

2

n

<

1

6

(if n is large enough). Denote by 


1

the word whose u

0

th bit is 1

and other bits are equal to 0. Repla
e the word �

0




0

by the word �

0




1

. After

this repla
ement at most 1=6 experts 
hange their opinions, hen
e, the fra
tion

�

�

fr 2 B

p(n)

j P (�

0




1

; r) = 1g

�

�

Æ

2

p(n)

is greater than 1=3. As F (�

0




1

) = 0, we get

the 
ontradi
tion.

7.3.2 Assertion 9A R

A

\ Co-R

A

6� �P

A

.
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Theorem 6. 9A R

A

\ Co-R

A

6� �P

A

Proof. Evidently, the manifold R

A

\ Co-R

A


an be generated by the following

separation problem F . If 
 2 F

1

, then F (
) = �. If 
 2 F

n+1

, denote by � the

�rst half of 
 and by � the se
ond half of 
. Then

F (
) =

8

>

<

>

:

0; if #

1

(�) = 0; #

1

(�) �

1

2

j�j;

1; if #

1

(�) �

1

2

j�j; #

1

(�) = 0;

�; otherwise.

By the Theorem 1, it suÆ
es to prove that F 6�

l

m

PARITY. Assume the 
ontrary:

suppose there exist a polynomial p and polylogarithmi
 predi
ate P su
h that

8n 8
 2 F

n+1

F (
) �

X

r2B

p(n)

P (
; r) = 1:

The signs

P

and + in this proof denote the addition modulo 2.

Let us �x a polylogarithmi
 ma
hine M 
omputing the predi
ate P and a suÆ-


iently large n. Let the number of queries to the word 
 made by M on inputs of

the form h
; ri, r 2 B

p(n)

, be bounded by k = poly(n). Let us prove that for any

�xed r 2 B

p(n)

the fun
tion P (
; r) is a polynomial of degree � k (in the �eld of

residues modulo 2) of variables 
(v), v 2 B

n

. Indeed,

P (
; r) =

X

k

Y

i=1

(
(v(b

1

� � � b

i�1

; r)) + b

i

+ 1);

where the sum ranges over all the tuples hb

1

; : : : ; b

k

i 2 B

k

su
h that M out-

puts 1 if it re
eives the answers b

1

; : : : ; b

k

to the queries made to 
, and where

v(b

1

� � � b

i

; r) 2 B

n+1

is the number of bit in 
 queried by M if it re
eives the

answers b

1

; : : : ; b

i

for the previous queries to 
.

Therefore, the fun
tion

P

r2B

p(n)

P (
; r) is a polynomial of degree at most k of

variables 
(v). Denote this polynomial by Q. Divide the variables 
(v), v 2 B

n+1

into two groups �(u), u 2 B

n

and �(u), u 2 B

n

, where �(u) = 
(0u) and �(u) =


(1u).

Consider two 
ases.

1st 
ase: the 
onstant term in Q is equal to zero. Set �(u) = 0 for all u 2 B

n

and set �(0

n

) = 0. Denote the resulting polynomial of degree at most k = poly(n)

by R. The polynomial R has 2

n

� 1 variables, has zero 
onstant term and is equal

to 1, if at least 2

n�1

variables are equal to 1. Let us derive a 
ontradi
tion from

the existen
e of su
h a polynomial. Consider the set A 
onsisting of all the 2

n�1

-

dimensional boolean ve
tors having exa
tly 2

n�1

ones. The 
ardinality of the set

A is equal to

�

2

n�1

2

n

�1

�

. Let us prove that this number is odd. We shall use a well

known 
riterion of whether

�

m

l

�

is odd.

Lemma 1.

�

m

l

�

is odd i� any bit of the binary representation of the number m is

greater than or equal to the 
orresponding bit of the number l.

Proof. Let i = m � l. Then

�

m

l

�

=

(i+l)!

i!l!

. For an integer k, denote by t(k) the

greatest integer j su
h that 2

j

divides k. Obviously, t(j!) =

�

j

2

�

+

�

j

4

�

+ : : : .

Therefore

t

�

�

m

l

�

�

=

�

�

i+ l

2

�

�

�

i

2

�

�

�

l

2

�

�

+

�

�

i+ l

4

�

�

�

i

4

�

�

�

l

4

�

�

+ : : :
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Ea
h term in this sum is nonnegative and

�

i+l

2

s

�

�

�

i

2

s

�

�

�

l

2

s

�

= 0 i� i mod 2

s

+

l mod 2

s

< 2

s

. Thus

�

m

l

�

is odd if i mod 2

s

+ l mod 2

s

< 2

s

for all s. This means

that the sth bit of i or the s-bit of l is equal to zero for all s.

By this lemma, the number

�

2

n�1

2

n

�1

�

is odd. For any a 2 A, R(a) = 1, there-

fore,

P

a2A

R(a) = 1. Consider an arbitrary monomial T in R. Let us prove

P

a2A

T (a) = 0 to get a 
ontradi
tion. Let T be equal to �(u

1

) � � ��(u

i

), where

i � k and u

1

, : : : , u

i

are di�erent. Sin
e R has no 
onstant term, we have i � 1. Let

us prove that the number a 2 A su
h that a(u

j

) = 1 for all j � i, is even. Obviously,

this number is equal to

�

2

n�1

�i

2

n

�1�i

�

(we assume that i < 2

n�1

; sin
e i � k = poly(n),

this is true if n is large enough). Let s be the number of the lowest bit of the binary

representation of i being equal to 1. Then the sth bit of the number 2

n

� 1� i is

equal to 0, and the sth bit of the number 2

n�1

� i is equal to 1. Lemma 1 implies

that the number

�

2

n�1

�i

2

n

�1�i

�

is even.

We have to 
onsider also the se
ond 
ase (the 
onstant term in Q is equal to 1).

But this 
ase 
an be redu
ed to the �rst 
ase by adding 1 to Q.

7.3.3 Assertion 8A Co-UP

A

6� IP

A

. This assertion was in fa
t proved in [FS 88℄

(te
hni
ally speaking, a slightly weaker assertion 9A Co-NP

A

6� IP

A

was proved in

that paper). As the proof is very simple, we present it.

Theorem 7 (Fortnow, Sipser). 9A Co-UP

A

6� IP

A

.

Proof. By Theorem 1, it suÆ
es to prove that the separation problem

F

Co-UP

(�) =

8

>

<

>

:

1; if #

1

(�) = 0;

0; if #

1

(�) = 1;

�; otherwise.

is not in IPLOG.

Assume the 
ontrary: suppose there exists a polylogarithmi
-time Veri�er V

su
h that

#

1

(�) = 0 ) 9P Prob [(P; V )(�) = 1℄ > 2=3;

#

1

(�) = 1 ) 8P Prob [(P; V )(�) = 1℄ < 1=3;

where (P; V )(�) stands the answer output by V after the dialogue with P on input

�.

Take a large n and set �

0

= 0

2

n

. Then there exists a Prover P su
h that

Prob [(P; V )(�

0

) = 1℄ > 2=3.

Consider the dialogue of P and V on input �

0

. This dialogue depends on

the out
ome of 
oin tossing made by Veri�er. Let us 
all di�erent out
omes of


oin tossing experts and let us 
all the queries to �

0

made by the Veri�er dur-

ing the dialogue with the Prover P on input �

0

and out
ome r of 
oin tossing

the queries of the expert r to �. For a given u 2 B

n


all the fra
tion

�

�

fr 2

B

p(n)

j makes the query `�

0

(u) =?'g

�

�

�

Æ

2

p(n)

the weight of u. Obviously, if n is

large enough, then there exists u having weight less than 1=3. Change the uth bit

in �

0

; denote the resulting word by �

1

. Sin
e Prob [(P; V )(�

0

) = 1℄ > 2=3, we ob-

tain Prob [(P; V )(�

1

) = 1℄ > 2=3� 1=3 = 1=3. On the other hand, this probability

should be less than 1=3. Contradi
tion.
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7.3.4 Assertion 9A FewP

A

\Co-FewP

A

6� UP

A

. We will prove in the next se
tion

the following stronger statement: 9A FewP

A

\ Co-FewP

A

6�

p;A

T

UP

A

.

7.3.5 Assertion 5. 9A Co-R

A

6� NP

A

.

Theorem 8. 9A Co-R

A

6� NP

A

.

Proof. Assume the 
ontrary: suppose there exist a polynomial p and a polyloga-

rithmi
 time predi
ate P (�; r) su
h that 8� 2 F,

#

1

(�) = 0 ) 9r 2 B

p(k�k)

P (�; r) = 1

#

1

(�) > 2=3j�j ) 8r 2 B

p(k�k)

P (�; r) = 0:

Let us �nd � su
h that #

1

(�) > (2=3)j�j and 9r 2 B

p(

k�k

)

P (�; r) = 1. Take

�

0

= 0

2

n

, where n is large enough. Then there exists r

0

2 B

p(n)

su
h that P (�

0

; r

0

).

Change the value of �

0

on all u su
h that the polylogarithmi
 ma
hine 
omputing

P (�

0

; r

0

) does not query `�

0

(u) =?'. The resulting word � satis�es the desired


onditions.

7.3.6 Assertion 9A IP

A

\Co-IP

A

6� PH

A

. In the paper [AGH 86℄ it was proved

that 9A IP

A

6� PH

A

. Minor 
hanges in that proof allows us to prove that there

exists an ora
le A su
h that IP

A

\ Co-IP

A

6� PH

A

.

7.3.7 Assertion 9A AM

A

\ Co-AM

A

6� PP

A

. This assertion is proved in the

paper [V 92℄.

7.3.8 Assertion 9A AM

A

6� �

A

2

. This assertion is proved in the paper [Sa 89℄.

7.3.9 Assertion 9A PP

A

6� PH

A

. This assertion follows from the fa
t that there

exists no k 2 N su
h that the fun
tion MAJORITY(x

1

; : : : ; x

n

) 
an be represented

in the following form

2

polylog(n)

_

i

1

=1

2

polylog(n)

^

i

2

=1

: : :

2

polylog(n)

_

i

2k�1

=1

2

polylog(n)

^

i

2k

=1

f

i

1

:::i

2k

(x

1

; : : : ; x

n

);

where f

i

1

:::i

2k

(x

1

; : : : ; x

n

) is a variable or the negation of a variable ([FSS 84℄, [A

83℄, [Y 85℄, [H 86℄).

7.3.10 Assertion 9A � P

A

6� PH

A

. This assertion is proved in the papers [FSS

84℄, [A 83℄, [Y 85℄, [H 86℄.

7.3.11 Assertion 9A �P

A

6� PP

A

. This assertion is proved in [BG 81℄. In fa
t,

this theorem easily follows from the assertion PARITY 6�

l

m

MAJORITY proven in

[MP 88℄.

7.3.12 Assertion 8k � 3 9A �

A

k

6� �

A

k

. The �rst superpolynomial lower bounds

for the size �

k

-
ir
uits ne
essary for the 
omputation of �

k

-fun
tions where ob-

tained by M. Sipser. We need the lower bound (2

f(n)

), where f grows faster than

any polylogarithm. Su
h a bound is obtained in the paper [H 86℄.
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8. Turing redu
ibility between parti
ular 
omplexity 
lasses

In this se
tion we shall present all the known relativizable assertions of the form

K

1

�

p

T

K

2

. Obviously, if K

1

� K

2

, then K

1

�

p

T

K

2

, therefore all the in
lusions

in Figure 1 yield the assertions on Turing redu
ibility. Let us list all other known

relativizable theorems of the form K

1

�

p

T

K

2

.

(1) The 
lass K is �

p

T

-redu
ible to the 
lass Co-K, and vi
e versa.

(2) �P

A

�

p

T

PP

A

.

(3) Few

A

�

p

T

NP

A

.

(4) PH

A

�

p

T

PP

A

.

The assertion (1) is evident. Both assertions (2) and (3) are simple. The asser-

tion (3) will be proved in x7, and the assertion (2) will be proved right now. The

assertion (4) was proved in the paper [T 89℄.

Theorem 9. �P

A

�

p

T

PP

A

for any ora
le A.

Proof. By Theorem 3 it suÆ
es to prove that the language PARITY(�) is �

l

T

-

redu
ible to the language

MAJORITY(�) =

�

1; if #

1

(�) �

1

2

j�j;

0; otherwise.

When we prove that a problem F is �

l

T

-redu
ible or is not �

l

T

-redu
ible to a

problem G it is 
onvenient to think that the redu
ing pair hM; fi is a ma
hine

that works on the input � just as the ma
hine M works on j�j and queries the

ora
le G instead of the ora
le G(f(�; �)) (when M queries the value of the ora
le

G(f(�; �)) on a word y, we think that the new ma
hine queries the value of G on

the word f(y; �)). Let us de�ne the pair hM; fi redu
ing the fun
tion PARITY to

the fun
tion MAJORITY in terms of the work of this new ma
hine.

Having MAJORITY as ora
le we 
an �nd #

1

(�) in time polylog(j�j) for any

given � as follows. Assume that j�j = 2

k

. Ask the ora
le MAJORITY whether

#

1

(�) �

1

2

j�j is true. Assume that the answer is \yes". Then 
he
k whether

#

1

(�) �

3

4

j�j. For that purpose take a word � 
onsisting of

1

2

j�j zeros and query

the ora
le whether #

1

(��) �

1

2

j��j . It is easy to verify that this inequality is

equivalent to the inequality #

1

(�) �

3

4

j�j. Repeating this pro
ess k times we �nd

#

1

(�). Output 1 if #

1

(�) is odd and 0 else.

All known relativizable assertions of the form K

1

�

p

T

K

2

are shown at the

Figure 2.

8.1 On 
ompleteness of Figure 2. It is unknown if the Figure 2 is 
omplete,

i.e., if all the relativizable theorems of the form K

1

�

p

T

K

2

are shown at Figure 2.

Let us go through the following 15 assertions whi
h should be proved to prove that

Figure 2 is 
omplete.

8.1.1. 9A R

A

\Co-R

A

6�

p;A

T

�P

A

. This assertion is true and follows from the fa
t

that the 
lass�P

A

is downward 
losed under �

p;A

T

-redu
tions and from the theorem

9A R

A

\Co-R

A

6� �P

A

. The 
loseness of the 
lass �P

A

under �

A

T

-redu
tions was

proved in [T 89℄, the se
ond theorem was proved in the previous se
tion.
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Figure 2. Turing redu
ibility between 
omplexity 
lasses.

8.1.2. UP

A

\ Co-UP

A

6�

p;A

T

BPP

A

. This assertion is true and follows from the

fa
t that the 
lass BPP

A

is downward 
losed under �

p;A

T

-redu
tions (for all A).

Indeed, in the previous se
tion it was proved that there exists an ora
le A su
h

that UP

A

\ Co-UP

A

6� BPP

A

.

8.1.3. 9A FewP

A

\ Co-FewP

A

6�

p;A

T

UP

A

. This assertion is true and is proved

in this se
tion.

8.1.4. 9A R

A

6�

p;A

T

NP

A

\ Co-NP

A

. This assertion is true and follows from the

fa
t that the 
lass NP

A

\ Co-NP

A

is downward 
losed under �

p;A

T

-redu
tions and

from the fa
t that 9A R

A

6� Co-NP

A

(it was proved in the previous se
tion).

8.1.5. 9A UP

A

6�

p;A

T

IP

A

\ Co-IP

A

. This assertion is true and follows from the

fa
t that the 
lass IP

A

\ Co-IP

A

is downward 
losed under �

p;A

T

-redu
tions and

from the fa
t 9A UP

A

6� Co-IP

A

proven in the previous se
tion.

8.1.6. 9A �

A

2

\ �

A

2

6�

p;A

T

IP

A

. This assertion is true and is proved in x9.
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8.1.7. 9A BPP

A

6�

p;A

T

NP

A

. This assertion is true and is proved in x9.

8.1.8. 9A �P

A

6�

p;A

T

PH

A

. This assertion is true and follows from the fa
t that

the 
lass PH

A

is downward 
losed under �

p;A

T

-redu
tions (the 
losure of the 
lass

�

k

is in
luded in the 
lass �

k+1

) and from the fa
t that 9A � P

A

6� PH

A

.

8.1.9. 9A AM

A

6�

p;A

T

�

A

2

\ �

A

2

. This assertion is true and follows from the fa
t

that the 
lass �

A

2

\ �

A

2

is downward 
losed under �

p;A

T

-redu
tions and from the

fa
t that 9A AM

A

6� �

A

2

.

8.1.10. 9A AM

A

\Co-AM

A

6�

p;A

T

MA

A

. This assertion was proved by the author

together with An. A. Mu
hnik. The proof is presented in this se
tion.

8.1.11. 9A � P

A

6�

p;A

T

IP

A

. This assertion is true and is proved in x9.

8.1.12. 9A IP

A

\ Co-IP

A

6�

p;A

T

PP

A

. Unknown.

8.1.13. 9A �

A

k

\�

A

k

6�

p;A

T

�

A

k�1

(k � 3). Unknown.

8.1.14. 9A �

A

k

6�

p;A

T

�

A

k

\ �

A

k

(k � 3). This assertion is true and follows from

the fa
t that the 
lass �

A

k

\�

A

k

is downward 
losed under �

p;A

T

-redu
tions and from

the fa
t that 9A �

A

k

6� �

A

k

.

8.1.15. 9A PH

A

6�

p;A

T

�

A

k

(k � 1). This assertion is true and follows from the

assertion 8.1.14.

8.2 Theorems. We prove now the assertions 8.1.3 and 8.1.10.

Theorem 10. (Joint work with An. A. Mu
hnik.) 9A AM

A

\Co-AM

A

6�

p;A

T

MA

A

.

Proof. Consider the following separation problem F . Let � = �
, where �; 
 2 F

2n

,

n 2 N. Then

F (�) =

8

>

>

>

>

>

<

>

>

>

>

>

:

1; if M

2=3

x 2 B

n

9y 2 B

n

�(xy) = 1;

M

2=3

x 2 B

n

8y 2 B

n


(xy) = 0;

0; if M

2=3

x 2 B

n

8y 2 B

n

�(xy) = 0;

M

2=3

x 2 B

n

9y 2 B

n


(xy) = 1;

�; otherwise.

By Theorem 3 it suÆ
es to prove that F is not �

l

T

-redu
ible to the problem F

MA

.

Re
all that F

MA

(�) 6= � only if the norm of � is even and that for k�k = 2k

F

MA

(�) =

8

>

<

>

:

1; if 9r 2 B

k

M

2=3

s 2 B

k

�(rs) = 1;

0; if 8r 2 B

k

M

2=3

s 2 B

k

�(rs) = 0;

�; otherwise.

The following property holds for the separation problem F

MA

as well as for all

other parti
ular problems G 
onsidered in the present paper. For any separation

problem H , if H �

l

T

G, then there exists a pair hM; fi redu
ing H to G su
h that

the following two assertions hold:

(1) the number of queries made by M for input n does not depend on the

answers of the ora
le and is equal to a polynomial of n and
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(2) for all the queries `B(u) =?' made by M to its ora
le B during the work on

the input j�j, the length of the word f(u; �) is the same and depends only

on j�j. That is, if we 
onsider the pair hM; fi as a single ma
hine, then all

its queries to the ora
le G during the work on the input � have the same

length whi
h depends only on j�j.

In the sequel, we assume that all the pairs hM; fi being 
onsidered satisfy both

properties (1) and (2).

Assume that F �

l

T

F

MA

via the pair hM;hi. Let us �x a large n (at the end of

the proof we will see how large it should be). Let ' be a fun
tion from B

n

into

B

n

. Denote by �' the word of length 2

2n

en
oding the graph of '. That is, for all

x; y 2 B

n

, �'(xy) is equal to 1 if y = '(x), and is equal to 0 otherwise. We will take

words of the form �'

�

 , where ' and  are partial fun
tions from the set B

n

into

the set B

n

, as arguments of F .

Let m = poly(n) be the number of queries made by M to the ora
le on input

2

2n+1

. We shall de�ne a binary sequen
e b

1

; : : : ; b

m

, partial fun
tions ';  : B

n

!

B

n

, and total fun
tions f

0

; g

0

: B

n

! B

n

su
h that the sequen
e of ora
le answers

to the queries made by hM;hi to the ora
le F

MA

during the work on the input

�

f

0

�

 is

equal to b

1

; : : : ; b

m

and the sequen
e of ora
le answers to the queries made by (M;h)

to the ora
le F

MA

during the work on the input �'�g

0

is also equal to b

1

; : : : ; b

m

. The


ardinalities of domains of the fun
tions ' and  will be bounded by a polynomial of

n, therefore, for large enough n we shall get jDom(')j, jDom( )j <

1

3

2

n

. Obviously,

we shall get a 
ontradi
tion be
ause hM;hi redu
es F to F

MA

and F (

�

f

0

�

 ) = 1,

F ( �'�g

0

) = 0.

Denote by 2k the norm of queries made by the pair hM;hi to the ora
le F

MA

(i.e., the norm of �'s su
h that hM;hi queries `F

MA

(�) =?') during the work on

inputs of the norm 2n+ 1 (obviously, k � poly(n)). De�ne the following auxiliary

separation problem on words of the norm 2k:

G(�) =

�

1; if 9r 2 B

k

M

1=2

s 2 B

k

�(rs) = 1,

0; otherwise.

Obviously, G solves F

MA

.

Take arbitrary fun
tions f; g : B

n

! B

n

. Run the ma
hine M on the input

2

2n+1

with the ora
le G(h(�;

�

f�g)). Denote by e(f; g) the sequen
e of ora
le answers.

Sin
e the length of the word e(f; g) is equal to m, there exists a word e

0

of length

m su
h that the fra
tion

�

�

fhf;gije(f;g)=e

0

g

�

�

2

n(2

n

)

is at least

1

2

m

. Denote the set fhf; gi j

e(f; g) = e

0

g by K. Obviously, for all the pairs hf; gi 2 K the queries to the ora
le

G(h(�;

�

f�g)) made by M are the same. Denote those queries by v

1

; : : : ; v

m

(i.e., the

queries are `G(h(v

1

;

�

f�g)) =?', : : : , `G(h(v

m

;

�

f�g)) =?'). Let P (�; v; u) denote the

uth symbol of the word h(v; �), (� 2 F

2n+1

, u 2 B

2k

). Denote the bits of the word

e

0

by b

1

; : : : ; b

m

.

Denote by I the set fi j i � m; b

i

= 1g. We know that if i 2 I , then for all

hf; gi 2 K there exists r

i

2 B

k

su
h that M

1=2

s 2 B

k

P (

�

f�g; v

i

; r

i

s) = 1. Again, we


an �nd a set K

0

� K su
h that for any i 2 I and for all hf; gi 2 K

0

that r

i

is the

same and su
h that

jK

0

j

jKj

�

1

2

km

. Evidently,

jK

0

j

2

n(2

n

)

�

1

2

km+m

. Denote the number

1

2

km+m

by ". We 
onsider the set K

0

as a planar set of the area not smaller than

". Obviously, there exists a verti
al se
tion of the set K

0

of length not smaller than

" and there exists a horizontal se
tion of the set K

0

of length not smaller than ".
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That is, there exist fun
tions f

0

; g

0

and families of fun
tions F

0

and G

0

su
h that

jF

0

j � "2

(n�2

n

)

, jG

0

j � "2

(n�2

n

)

, ff

0

g � G

0

� K

0

, F

0

� fg

0

g � K

0

.

De�ne now a partial fun
tion ' : B

n

! B

n

and a family F 
onsisting of

(total) fun
tions from B

n

into B

n

. Assume that x; y are in B

n

. Denote by

popularity

F

(x; y) the fra
tion

�

�

ff 2 F j f(x) = yg

�

�

Æ

�

�

Fj. Set �rst ' = ;,

F = F

0

. Then, while there exists a pair hx; yi 2 (B

n

n Dom(')) � B

n

su
h that

popularity

F

hx; yi � 2

�n+1

, pi
k su
h a pair hx; yi, extend the partial fun
tion ' to

x by setting '(x) = y, and delete from F all the fun
tions f su
h that f(x) 6= y.

We 
laim that the resulting ', F have the following properties:

(1) F � F

0

,

(2) all the fun
tions from the set F extend ',

(3) popularity

F

(x; y) < 2

�n+1

for all hx; yi 2 (B

n

nDom('))�B

n

,

(4) jDom(')j � � log

2

(jF

0

j=2

n(2

n

)

) � km+m = poly(n).

The properties (1){(3) are evident. Let us prove the assertion (4). Let F

i

, '

i

, x

i

,

and y

i

denote the value of the variables F , ', x, and y after ith iteration of the

while-loop. Then

jF

i+1

j=

�

�

ff : B

n

! B

n

j f extends '

i+1

g

�

�

� 2jF

i

j

Æ

�

�

ff : B

n

! B

n

j f extends '

i

g

�

�

be
ause

jF

i+1

j � 2

�n+1

jF

i

j

and

�

�

ff : B

n

! B

n

j f extends '

i+1

g

�

�

= 2

�n

�

�

ff : B

n

! B

n

j f extends '

i

g

�

�

:

Sin
e

jF

i+1

j=

�

�

ff : B

n

! B

n

j f extends '

i+1

g

�

�

� 1;

for all i, the number of iterations of the while-loop is at most � log

2

(jF

0

j=2

n(2

n

)

).

Apply the same pro
edure to the family G

0

and denote by G;  the resulting

fun
tions.

Let us prove that for all i � m,

F

MA

(h(v

i

; �'�g

0

)) = b

i

:

Take an arbitrary i � m. Consider two 
ases.

1st 
ase: b

i

= 1. Then we know that

(�) M

1=2

s 2 B

k

P (fg

0

; v

i

; r

i

s) = 1

for all the f 2 F . By de�nition of �

l

T

-redu
ibility, F

MA

(h(v

i

; �'�g

0

)) 6= � (if n is so

large that jDom(')j <

1

3

2

n

). Assume that F

MA

(h(v

i

; �'�g

0

)) = 0. Then

(��) M

2=3

s 2 B

k

P ( �'�g

0

; v

i

; r

i

s) = 0:

Let N be the ma
hine that for any given � 2 F, v 2 B

�

, u 2 B

k�k

in time

poly(jvj + k�k) 
omputes P (�; v; u). If � has the form ��

�

�, where �; � are partial

fun
tions from B

n

into B, then the queries made by N to � have one of the two
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following forms: `�(x) = y?' and `�(x) = y?', where x; y 2 B

n

. For x; y 2 B

n

denote by w

'g

0

(x; y) the fra
tion

�

�

fs 2 B

n

j N on the input h �'�g

0

; v

i

; r

i

si queries `'(x) = y?'g

�

�

Æ

2

n

:

Obviously,

P

x;y2B

n

w

'g

0

(x; y) � poly(n). Then for any f 2 F the assertions (�)

and (��) imply that

X

x2B

n

nDom(')

w

'g

0

(x; f(x)) �

1

6

; therefore

1

jFj

X

f2F ; x2B

n

nDom(')

w

'g

0

(x; f(x)) �

1

6

:

Let us rewrite the left hand side of the last inequality as follows:

1

jFj

X

f2F ; x2B

n

nDom(')

w

'g

0

(x; f(x)) =

=

X

x2B

n

nDom('); y2B

k

w

'g

0

(x; y) � popularity

F

(x; y) �

� 2

�n+1

X

x2B

n

nDom('); y2B

k

w

'g

0

(x; y) � 2

�n+1

poly(n):

If n is large enough, we get the 
ontradi
tion: 2

�n+1

poly(n) �

1

6

.

2nd 
ase: b

i

= 0. We know that

�

�

fs 2 B

k

j P (

�

f�g

0

; v

i

; rs) = 0g

�

�

Æ

2

k

is at most

1/2 for all r 2 B

k

and for all f 2 F . Assume that F

MA

(h(v

i

; �'�g

0

)) = 1, that is,

there exists r 2 B

k

su
h that

M

2=3

s 2 B

k

P ( �'�g

0

; v

i

; rs) = 1:

Then just as it was done in the �rst 
ase we 
an get a 
ontradi
tion. In the same

way we 
an prove that 8i � m,

F

MA

(h(v

i

;

�

f

0

�

 )) = b

i

:

Theorem 11. There is an ora
le A su
h that FewP

A

\ Co-FewP

A

6�

p;A

T

UP

A

.

Proof. To demonstrate the method let us prove �rst that there exists an ora
le A

su
h that FewP

A

\Co-FewP

A

6� UP

A

. De�ne the following separation problem F .

If k�k = k
k, then

F (�
) =

8

>

<

>

:

1; if 1 � #

1

(�) � 2; #

1

(
) = 0,

0; if 1 � #

1

(
) � 2; #

1

(�) = 0,

�; otherwise.

By the Theorem 1, it is suÆ
ient to prove that F 62 UPLOGS. Assume the 
ontrary:

suppose there exist a polynomial p and a polylogarithmi
-time predi
ate P su
h

that

F (�
) = 1 =) 9!r 2 B

p(k�k)

P (�
; r) = 1;

F (�
) = 0 =) 8r 2 B

p(k�k)

P (�
; r) = 0:
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Take �

0

= 


0

= 0

2

n

, where n is large. Consider two 
ases.

1st 
ase: 9r 2 B

p(n)

P (�

0




0

; r) = 1.

Pi
k an expert r

0

su
h that P (�

0




0

; r

0

) = 1. If n is large enough, then there

exists u 2 B

n

, su
h that r

0

does not query `


0

(u) =?'. Set 


0

(u) = 1 and get a


ontradi
tion.

2nd 
ase: 8r, P (�

0




0

; r) = 0.

Let us prove that if n is large enough, then there exists �

1

2 F

n

su
h that

#

1

(�

1

) = 2 and #fr 2 B

p(n)

: P (�

1




0

; r) = 1g � 2. For a u 2 B

n

denote by �

u

0

the word whose uth bit is 1 and other bits are 0. For all u we have F (�

u

0




0

) = 1,

therefore, 8u 2 B

n

9!r 2 B

p(n)

P (�

u

0




0

; r) = 1. Denote that r by r

u

. Call the set

of all v 2 B

n

su
h that the expert r

u

queries `�

u

0

(v) =?' the 1-base of u, and 
all

the set of all v 2 B

n

su
h that the expert r

u

queries `�

0

(v) =?' the 0-base of u.

Denote the bases of u by B

1

(u) and B

0

(u) respe
tively.

Let us prove that if n is large enough, then there exist u

1

; u

2

2 B

n

su
h that

u

1

62 B

0

(u

2

) [ B

1

(u

2

), and u

2

62 B

1

(u

1

). Indeed, the numbers of elements in all

bases are bounded by a polynomial of n, say q(n). Take random u

1

, u

2

(independent

and uniformly distributed). We have

Prob [u

1

2 B

0

(u

2

)℄ �

q(n)

2

n

;

Prob [u

1

2 B

1

(u

2

)℄ �

q(n)

2

n

;

Prob [u

2

2 B

1

(u

1

)℄ �

q(n)

2

n

:

Therefore, all three events do not happen with probability 
lose to 1.

Fix u

1

and u

2

su
h that u

1

is not in B

0

(u

2

)[B

1

(u

2

) and u

2

is not in B

1

(u

1

). Let

us de�ne the word �

1

as follows: �

1

(u

1

) = �

1

(u

2

) = 1 and �

1

(v) = 0 for v 6= u

1

; u

2

.

Then �

1




0

2 D(F ) and P (�

1




0

; r

u

1

) = P (�

1




0

; r

u

2

) = 1 (sin
e u

2

62 B

1

(u

1

),

u

1

62 B

1

(u

2

)). We have r

u

1

6= r

u

2

be
ause P (�

u

1

0




0

; r

u

1

) = 1 and P (�

u

1

0




0

; r

u

2

) = 0

(sin
e u

1

62 B

0

(u

2

)). The 
ontradi
tion shows that F is not in UPLOGS.

Let us prove now that F is not �

l

T

-redu
ible to F

UP

. Re
all that

F

UP

(�) =

8

>

<

>

:

1; if #

1

(�) = 1,

0; if #

1

(�) = 0,

�; otherwise.

Assume that F is �

l

T

-redu
ible to F

UP

via the pair hM; fi. Then, by de�nition of

�

l

T

-redu
ibility we have

(�) 8� 2 D(F ) 8e 2 B

�

#

1

(f(e; �)) 2 f0; 1g

Fix n 2 N and set �

0

= 0

2

n+1

. Denote by D

1

the set f� 2 F

n+1

: #

1

(�) = 1g.

Evidently, D

1

� D(F ). We 
onstru
t a set U � B

n+1

having at most poly(n)

elements su
h that for all � in D

1

that are equal to zero on all the elements of U ,

the sequen
e of answers for queries to ora
le F

UP

made by hM; fi during the work

on input � is the same.

Denote by m the number of queries made by M to ora
le during the work on the

input 2

n+1

. De�ne the binary sequen
e b

1

; : : : ; b

m

and the sequen
e v

1

; : : : ; v

m

of
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binary words by indu
tion as follows. Let v

i

be the word su
h that the ma
hine M

asks `�(v

i

) =?' during the work on input 2

n+1

after getting the answers b

1

; : : : ; b

i�1

to the previous questions to ora
le and let

b

i

=

�

1; if #

1

(f(v

i

; �

0

)) � 1,

0; otherwise.

Let us 
onstru
t for any i a set U

i

su
h that F

UP

(f(v

i

; �)) = b

i

for all � 2 D

1

being

equal to zero on all the elements of U

i

. Then we set U =

S

m

i=1

U

i

.

Let us �x any i not ex
eeding m and 
onstru
t U

i

. By de�nition of �

l

T

-

redu
ibility, there exists a ma
hine N that for any given h�; v

i

; ri (where jrj =

kf(v

i

; �)k) produ
es rth bit of the word f(v

i

; �) in time polylogarithmi
 of j�j.

Consider two 
ases.

1st 
ase: b

i

= 1, that is, #

1

(f(v

i

; �

0

)) � 1. Pi
k a word r su
h that f(v

i

; �

0

)(r) =

1. In
lude in U

i

all the words u 2 B

n

su
h that N asks `�

0

(u) =?' during the


omputation on input h�

0

; v

i

; ri. Then #

1

(f(v

i

; �)) � 1 for all � 2 F

n+1

being

equal to zero on all the elements of U

i

. By (�), this means that #

1

(f(v

i

; �)) = 1

for all � 2 D

1

being equal to zero on all the elements of U

i

.

2nd 
ase: #

1

(f(v

i

; �

0

)) = 0. Let �

0

= 


0

= 0

2

n

. We use all notation introdu
ed

during the proof of the �rst part. Let us prove that the set V = fu 2 B

n

j

#

1

(f(v

i

; �

u

0




0

)) = 1g has no more than poly(n) elements. Namely, we 
laim that

jV j � 3q(n), where q(n) is a polynomial upper bound for the number of queries

of the form `�

0

(v) =?' made by N during the 
omputation on any input h�

0

; v

i

; ri

(where jrj = kf(v

i

; �

0

)k). Assume the 
ontrary: suppose that jV j > 3q(n). For

u 2 V denote by r

u

the word r su
h that rth bit of word f(v

i

; �

u

0




0

) is 1. Denote

by B

0

(u) [B

1

(u)℄ the set of all v su
h that N queries `�

0

(v) =?' [`�

u

0




0

(v) =?'℄

at some moment during the 
omputation on the input h�

0

; v

i

; r

u

i [h�

u

0




0

; v

i

; r

u

i℄.

Then jB

0

(u)j; jB

1

(u)j � q(n) for all u 2 V . Take random independent u

1

; u

2

being

uniformly distributed in V . The probability of event \u

1

62 B

0

(u

2

) [ B

1

(u

2

); u

2

62

B

1

(u

1

)" is at least 1� 3q(n)=jV j > 0. Just as it was done in the proof of the �rst

part, we 
an 
onstru
t a word �

1

2 D(F ) su
h that #

1

(f(v

i

; �

1




0

)) � 2, whi
h


ontradi
ts to (�).

Likewise we 
an 
onstru
t a set V

0

having poly(n) elements su
h that #

1

(f(v

i

; �

0




u

0

)) =

1 for all u 2 B

n

n V

0

. Set U

i

= V [ V

0

.

If n is so large that 2

n

> jU j, there exist �

1

; �

2

2 D

1

su
h that F (�

1

) = 1,

F (�

2

) = 0 and both �

1

and �

2

are equal to zero on all the elements of U . We have

hM; fi

F

UP

(�

1

) = hM; fi

F

UP

(�

2

). The obtained 
ontradi
tion proves the theorem.

9. Complete languages in parti
ular 
omplexity 
lasses

It is known that the following 
lasses

(9.1) P

A

; NP

A

; Co-NP

A

; �

A

k

; �

A

k

; PSPACE

A

; �P

A

; PP

A

:

have �

p

m

-
omplete languages. All the known theorems of the form \K

A

2

is �

p;A

m

-

hard (or �

p;A

T

-hard) for the 
lass K

A

1

for all A" 
an be obtained using the following

two rules:

(1) a 
lass K

A

2

is �

p

m

-hard for the 
lass K

A

1

if there exists a 
lass K

A

in the list

(9.1) su
h that K

A

1

� K

A

� K

A

2

;

(2) a 
lass K

A

2

is �

p

T

-hard for the 
lass K

A

1

if there exists a 
lass K

A

in the list

(9.1) su
h that K

A

1

�

p

T

K

A

� K

A

2

.
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9.1 Are the rules (1) and (2) 
omplete? It is unknown if all true assertions

of the form \K

A

2

is �

p;A

m

-hard [�

p;A

T

-hard℄ for the 
lass K

A

1

for all A", where K

A

1

and K

A

2

are 
lasses shown at Figure 1, 
an be obtained by the rules (1) and (2). We

have proved some assertions whi
h are ne
essary to prove in order to get positive

answer to the above question. Indeed, if K

A

2

is �

p;A

m

-hard for the 
lass K

A

1

, then

K

A

1

� K

A

2

(sin
e all the 
lasses under 
onsideration are downward 
losed under

�

p;A

m

-redu
tions). Therefore, if we have proved that 9A K

A

1

6� K

A

2

, then we have

also proved that 9A K

A

2

is not �

p;A

m

-hard for the 
lass K

A

1

. Analogously, if we

have proved that 9A K

A

1

6�

p;A

T

K

A

2

, then we have also proved that 9A K

A

2

is not

�

p;A

T

-hard for the 
lass K

A

1

. Let us go through remaining assertions whi
h should

be proved to obtain the positive answer to the above question. We divide the

list of those assertions into two parts. The �rst part 
ontains all the assertions of

the form \9A K

A

2

is not �

p;A

T

-hard for the 
lass K

A

1

" su
h that it is unknown if

9A K

A

2

�

p;A

T

K

A

1

, the se
ond part 
ontains all the remaining assertions.

The �rst part of the list.

1. 9A PP

A

is not �

p;A

T

-hard for the 
lass IP

A

\Co-IP

A

. It is unknown whether

this is true. Sin
e PP

A

has �

p

m

-
omplete language, this assertion is equivalent to

the assertion 9A IP

A

\ Co-IP

A

6�

p;A

T

PP

A

.

2. 9A �

A

k

is not �

p;A

T

-hard for the 
lass �

A

k+1

\ �

A

k+1

. It is unknown whether

this is true. Sin
e �

A

k

has a �

p

m

-
omplete language, this assertion is equivalent to

the assertion 9A �

A

k+1

\ �

A

k+1

6�

p;A

T

�

A

k

.

The se
ond part of the list.

1. 9A �

A

k

\ �

A

k

is not �

p;A

T

-hard for the 
lass �

A

k

\ �

A

k

(k � 3). It is unknown

whether this is true or not.

2. 9A IP

A

is not�

p;A

T

-hard for the 
lass BPP

A

. This was proved by An. A. Mu
h-

nik together with the author. The proof is presented in this se
tion.

3. 9A IP

A

\ Co-IP

A

is not �

p;A

T

-hard for the 
lass R

A

\ Co-R

A

. This assertion

is true and was proved in [HJV 92℄.

4. 9A IP

A

\Co-IP

A

is not �

p;A

T

-hard for the 
lass UP

A

\Co-UP

A

. This assertion

is true. The proof is presented in this se
tion.

5. 9A �

A

2

\�

A

2

is not �

p;A

T

-hard for the 
lass BPP

A

. It is unknown whether this

is true or not.

6. 9A Few

A

is not �

p;A

T

-hard for the 
lass UP

A

\Co-UP

A

. This assertion is true.

In the paper [HJV 92℄, it was proved that there exists an ora
le A su
h that the


lass FewP

A

is not �

p;A

T

-hard for the 
lass UP

A

\ Co-UP

A

. In the present paper

we prove that Few

A

is not �

p;A

T

-hard for the 
lass UP

A

\ Co-UP

A

for some A.

7. 9A �

A

2

\�

A

2

is not �

p;A

T

-hard for the 
lass Few

A

. It is unknown whether this

is true or not.

The listed assertions are \maximal" possible assertions of the form \9A K

A

2

is

not �

p;A

T

-hard for the 
lass K

A

1

" (this means that if we repla
e the 
lass K

A

1

by

some lower 
lass in the Figure 1 or repla
e the 
lass K

A

2

by some upper 
lass in

the Figure 1, then the assertion be
omes false). Let us give other assertions of
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this form proven earlier. In the paper [S 82℄ it is proved that 9A R

A

has no �

p;A

m

-


omplete language, this theorem is strengthened in the paper [HJV 92℄ to prove

that 9A R

A

has no �

p;A

T

-
omplete language; in the paper [S 82℄ it is proved that

9A NP

A

\Co-NP

A

has no �

p;A

m

-
omplete language; in the paper [HH 88℄ it is proved

that 9A BPP

A

has no �

p;A

m

-
omplete language, in the papers [A-S 86℄, [G 83℄, [HI

85℄ both results are strengthened to prove that 9A NP

A

\ Co-NP

A

has no �

p;A

T

-


omplete language and 9A BPP

A

has no �

p;A

T

-
omplete language; in the paper

[HH 88℄ it is proved that 9A UP

A

has no �

p;A

m

-
omplete language, this theorem is

strengthened in the paper [HJV 92℄ to prove that 9A UP

A

has no �

p;A

T

-
omplete

language.

9.2 Theorems on non-
ompleteness. Let us turn to the proofs. We use the

following lemma.

Lemma 2. If F and G are nondegenerate separation problems su
h that

(9.1) F 62 n.u.PLOGS and

(9.2) n.u.LOGS(G) = n.u.PLOG,

then there exists an ora
le A su
h that the 
lass POLY

A

(G) is not �

p;A

T

-hard for

the 
lass POLY

A

(F ).

Proof. By the Theorem 4, it suÆ
es to prove that the separation problem F is �

l

T

-

redu
ible to no language in the 
lass LOG(G). Assume that there exists a language

H 2 LOGS(G) su
h that F �

l

T

H . Then H is in n.u.LOGS(G) = n.u.PLOG �

n.u.PLOGS. Therefore F is in n.u.PLOGS be
ause the 
lass n.u.PLOGS is down-

ward 
losed under �

l

T

-redu
tions.

Assertions 3 and 4 
an be easily derived from the Lemma 2, Theorem 3, and the

following theorem.

Theorem 12. n.u.IPLOG \ Co-n.u.IPLOG = n.u.PLOG.

We omit the proof of Theorem 12 be
ause its proof is an easy generalization of

Nisan's result (see [N 89℄) n.u.BPPLOG = n.u.PLOG. Independently, Theorem 12

was proved by the author it the �rst version of the present paper.

The assertion 6 
an be proved in similar way. Formally, we 
annot use Lemma 2

be
ause we do not know whether the manifold Few

A

is regular.

Theorem 13. If F is a nondegenerate separation problem and F is not in n.u.PLOGS,

then there exists an ora
le A su
h that the 
lass Few

A

is not �

p;A

T

-hard for the 
lass

POLY

A

(F ).

Proof. We 
an apply the diagonal 
onstru
tion used in the proof of Theorem 3. It

is 
lear that it suÆ
es to prove the following lemma.

Lemma 3. Let P (�; r) be a predi
ate being de�ned on the set F � B

�

and 
om-

putable in poly(k�k; jrj) queries to � and let p(n), q(n) be polynomials su
h that

8� 2 F

�

�

fr 2 B

p(k�k)

: P (�; r) = 1g

�

�

� q(k�k). Then the fun
tion

f(�) =

�

�

fr 2 B

p(k�k)

: P (�; r) = 1g

�

�

is non-uniformly polylogarithmi
.

Proof. Let us �x a polynomial s(k�k; jrj) and a ma
hine M su
h that M 
omputes

P (�; r) in time s(k�k; jrj) for any given h�; ri. Let n be an integer. Denote p(n) by
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m and s(n;m) by k. Let us 
all words in the set B

m

experts. We say that an expert

r a

epts � 2 F

n

if P (�; r) = 1. For any � 2 F

n

let f(�) = fr 2 B

m

j r a

epts �g.

It is suÆ
ient to prove that the fun
tion f(�) 
an 
an be 
omputed in q(n)k

2

queries.

Call any partial fun
tion ' : B

n

! B a segment. Two segments are 
onsistent

if they have 
ommon extension. Any expert for a given � : B

n

! B queries the

value of � on k arguments, say u

1

; : : : ; u

k

. Call the segment fhu

i

; �(u

i

)i j i � kg

the information of r about �. Call the information of r about any � a

epted by r

a 
erti�
ate of expert r. A 
erti�
ate is a 
erti�
ate of some expert.

We �nd all experts a

epting � for any given � 2 F

n

as follows. For any subset U

of B

n

denote by �

U

(�) the set of all 
erti�
ates having the same value on elements

of U as � has. Our goal is to 
onstru
t a set U su
h that �

U

(�) is the set of

all 
erti�
ates 
onsistent with �. Let us start with U = ;. Repeat k times the

following loop.

Take any maximal (with respe
t to in
lusion) subset 	 = f'

1

; : : : ; '

j

g of �

U

(�)

su
h that the sets Dom('

1

) n U; : : : ;Dom('

j

) n U are pairwise disjoint. Then

j � q(n) be
ause there exists � 2 F

n

being 
onsistent with all 
erti�
ates in

	 and '

1

; : : : ; '

j

are 
erti�
ates of di�erent experts (be
ause 
erti�
ates of any

expert are pairwise in
onsistent). Ask the value of � on all the elements of the

set V = (Dom('

1

) [ � � � [ Dom('

j

)) n U . Sin
e 	 is maximal, the domain of any


erti�
ate ' 2 �

U

(�)n	 interse
ts with V . Set U = U[V . Note that jDom(')nU j

is de
reased for any 
erti�
ate ' 2 �

U

(�) n	 and Dom(') nU be
omes empty for

any 
erti�
ate ' 2 	 after this setting. The loop is 
ompleted.

The value maxfjDom(') nU j j ' 2 �

U

(�)g de
reases or remains zero after ea
h

iteration of the above loop. Therefore, Dom(') � U for any ' 2 �

U

(�) after k

iterations of the loop. This means that �

U

(�) is the set of all 
erti�
ates 
onsistent

with �. Obviously, an expert a

epts � i� some its 
erti�
ate is 
onsistent with �.

Hen
e we know all the experts a

epting �. It remains to note that during ea
h

iteration of the loop we make at most q(n) � k queries to �.

The assertion 2 
annot be derived from the Lemma 2 sin
e n.u.IPLOG � n.u.NPLOG �

n.u.PLOG.

Theorem 14. (Joint work with An. A. Mu
hnik). There is an ora
le A su
h that

IP

A

is not �

p;A

T

-hard for the 
lass BPP

A

.

We prove this theorem together with the yet unproved theorems from the pre-

vious se
tion.

Theorem 15. 9A BPP

A

6�

p;A

T

NP

A

.

Theorem 16. 9A � P

A

6�

p;A

T

IP

A

.

Theorem 17. 9A �

A

2

\ �

A

2

6�

p;A

T

IP

A

.

Proofs of Theorems 14{17. In fa
t, Theorem 15 follows from Theorem 14 be
ause

the 
lass NP

A

has a �

p

m

-
omplete language and NP

A

� IP

A

. Nevertheless we prove

�rst Theorem 15. By Theorem 4 it suÆ
es to prove that F

BPP

6�

l

T

F

NP

.

Assume that F

BPP

�

l

T

F

NP

. Let hM; fi be a redu
ing pair. Fix a large n.

Denote by m the number of queries made by M to ora
le during the work on

input 2

n

. Obviously, m � poly(n). Assume that � is in F

n

. Run the ma
hine

M supplied with the ora
le F

NP

(f(�; �)) on the input 2

n

. Denote by e(�) the
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sequen
e of ora
le answers re
eived by M in that 
omputation (e(�) 2 B

m

). Take

an � 2 F

n

having lexi
ographi
al greatest e(�), denote that � by �

0

. Denote

e(�

0

) by e

0

= b

0

1

� � � b

0

m

, and denote the queries of M to the ora
le F

NP

(f(�; �

0

))

by v

1

; : : : ; v

m

(more pre
isely, the queries are `F

NP

(f(v

i

; �

0

)) =?'). Let I be the

set of all the indi
es i � k su
h that F

NP

(f(v

i

; �

0

)) = 1, that is, #

1

f(v

i

; �

0

) > 0.

For ea
h i 2 I �x a word t

i

su
h that f(v

i

; �

0

)(t

i

) = 1. Let q(n) be a polynomial

bounding the time of weak 
omputation of the fun
tion f(v

i

; �) for � 2 F

n

, i � m.

Obviously, for any i 2 I there exists a set U

i

� B

n

having at most q(n) elements

su
h that f(v

i

; �)(t

i

) = 1 for all � having the same values on all the elements of

U

i

as �

0

has. Set U =

S

i2I

U

i

. Evidently, jU j � mq(n) = poly(n). We have

F

NP

(f(v

i

; �)) = 1 for all i � m su
h that b

0

i

= 1 and for all � 2 F

n

having the

same values on all the words in U as �

0

has.

We 
laim that, moreover, e(�) = e(�

0

) for all � 2 F

n

having the same values

on all the words in U as �

0

has. Assume the 
ontrary. Let � be a 
ounterexample.

Let b

1

� � � b

m

be the bits of e(�). Let i be the least number su
h that b

i

6= b

0

i

.

Then, sin
e the word e

0

is the lexi
ographi
al greatest word among the word of

the form e(�), � 2 F

n

, we have b

i

= 0, b

0

i

= 1. As � and �

0

have the same

values on all the words in U , we have F

NP

(f(v

i

; �)) = 1. On the other hand

b

0

1

� � � b

0

i�1

= b

1

� � � b

i�1

, therefore the ith query to the ora
le made by M during

the 
omputation on the input 2

n

with the ora
le F

NP

(f(�; �)) is `F

NP

(f(v

i

; �)) =?'.

Consequently, F

NP

(f(v

i

; �)) = b

i

. The 
ontradi
tion proves the 
laim.

The equality e(�) = e(�

0

) implies that hM; fi

F

NP

(�) = hM; fi

F

NP

(�

0

). Without

loss of generality we may assume that hM; fi

F

NP

(�

0

) = 0. Take n so large that

jU j <

1

3

2

n

. Let � be equal to �

0

on all the elements of U and to 1 on all the elements

of B

n

n U . We have F

BPP

(�) 6� hM; fi

F

NP

(�

0

) = hM; fi

F

NP

(�). Theorem 15 is

proved.

Let us prove Theorem 16. Sin
e PARITY is a language, by Theorem 3, it suÆ
es

to prove that PARITY 6�

l

T

IPLOG. Assume that PARITY is �

l

T

-redu
ible to a

language F in the 
lass IPLOG via a pair hM; fi. De�ne �

0

, m, q(n), v

1

; : : : ; v

m

,

e

0

just as it was done in the previous proof. Sin
e F is in IPLOG, there exists a

polylogarithmi
 Veri�er V for F . For ea
h i � m su
h that b

0

i

= 1, �x a Prover P

i

su
h that Prob [(P

i

; V )(f(v

i

; �

0

)) = 1℄ > 2=3. Let N be a ma
hine that 
omputes

the tth bit of the word f(v; �) within time poly(k�k + jvj) for any given h�; v; ti,

where jtj = kf(v; �)k. Let r = poly(n) is an upper bound for the number of queries

of the form `�

0

(x) =?', where x is in B

n

, made by N in 
omputations on inputs

of the form h�

0

; v

i

; ti, where jtj = kf(v

i

; �

0

)k. Denote f(v

i

; �

0

) by �

i

0

. Let s =

poly(n) be an upper bound for the number of queries of the form `�

i

0

(t) =?', where

jtj = k�

i

0

k, made by V in dialogue with P

i

on input �

i

0

. Let x be in B

n

. Denote

by w

i

�

0

(x) the probability of the event \there exists t 2 B

k�

i

0

k

su
h that V queries

`�

i

0

(t) =?' in the dialogue with P

i

on input �

0

and N queries `�

0

(x) =?' during

the 
omputation on the input h�

0

; v

i

; ti". Then

P

i:b

0

i

=1

P

x2B

n

w

i

�

0

(x) � msr,

therefore, there exists x

0

2 B

n

su
h that

P

i:b

0

i

=1

w

i

�

0

(x

0

) � msr=2

n

< 1=3 (if n is

suÆ
iently large). Change the x

0

th bit of �

0

and denote the resulting word by �.

Let us prove that e(�) = e(�

0

), and therefore hM; fi

F

(�) = hM; fi

F

(�

0

). Assume

that e(�) 6= e(�

0

). Denote by b

1

� � � b

m

the bits of e(�). Take the least i su
h that

b

i

6= b

0

i

. Then b

i

= 0 and b

0

i

= 1. Therefore, F (f(v

i

; �)) = 0, 
onsequently,

Prob [(P

i

; V )(f(v

i

; �)) = 1℄ < 1=3:
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On the other hand,

Prob [(P

i

; V )(f(v

i

; �

0

)) = 1℄ > 2=3:

Hen
e, w

i

�

0

(x

0

) > 1=3 be
ause � and �

0

have di�erent value only on x

0

. The

obtained 
ontradi
tion shows that e(�) = e(�

0

) and hM; fi

F

(�) = hM; fi

F

(�

0

).

Sin
e PARITY(�) 6= PARITY(�

0

), the theorem is proved.

Let us prove Theorem 14. We have to prove that the separation problem F

BPP

is

�

l

T

-redu
ible to no language F in the 
lass IPLOG. Assume the 
ontrary: F

BPP

�

l

T

F 2 IPLOG. We use all notations from the previous proof. Without loss of

generality we may assume that hM; fi

F

(�

0

) = 1. Let �

1

be a word in the set

f� 2 F

n

j e(�) = e(�

0

)g having the least number of ones. Without loss of generality

we may assume that �

1

= �

0

. If #

1

(�

0

) <

1

3

2

n

, then the 
ontradi
tion is already

derived. If #

1

(�

0

) �

1

3

2

n

, then there exists x

0

2 B

n

su
h that

P

i:b

0

i

=1

w

i

�

0

(x

0

) �

msr

(1=3)2

n

< 1=3 and �

0

(x

0

) = 1. De�ne the word � as follows: �(x

0

) = 0, �(x) =

�

0

(x) for x 6= x

0

. Then #

1

(�) < #

1

(�

0

). Just as it was done in the previous proof

we 
an prove that e(�) = e(�

0

). This 
ontradi
ts with the 
hoi
e of �

0

.

Let us prove Theorem 17. Let � be a partial fun
tion from B

n

into B

n

. Denote

by �� the word en
oding the graph of � (�� 2 B

2

2n

). Consider the separation problem

F (
) =

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

1; if 9n 2 N : 
 = ��

�

�, where � and � are partial

fun
tions from B

n

into B

n

su
h that � is total and �

is de�ned on all the arguments but one,

0; if 9n 2 N : 
 = ��

�

�, where � and � are partial

fun
tions from B

n

into B

n

su
h that � is total and �

is de�ned on all the arguments but one,

�; otherwise.

Denote by E

n

the set f
 2 F

2n+1

j F (
) 6= �g.

By Theorem 4, it suÆ
es to prove that there exists no G 2 IPLOGS su
h that

F �

l

T

G. Assume that su
h a problem G exists. Let hM; fi be pair redu
ing F to G.

Fix a large n. We use all the notations from the previous proofs. Take a word 
 2 E

n

having the lexi
ographi
al greatest e(
). Let �

0

; �

0

be partial fun
tions su
h that


 = ��

0

�

�

0

. Without loss of generality we may assume that F (��

0

�

�

0

) = 1, that is, �

0

is

total. Let �

0

be unde�ned on the word x

1

. Fix a Veri�er for the solving the problem

G. We enumerate bits of 
 in su
h a way that for x; y 2 B

n

, 
(0xy) = ��

0

(xy),


(1xy) =

�

�

0

(xy). For an i su
h that b

0

i

= 1, de�ne the weight w

i

�

0

�

0

(u) of word

u 2 B

2n+1

as follows: w

i

�

0

�

0

(u) is equal to the probability of the event \there exists

t 2 B

kf(v

i

;�

0

)k

su
h that V queries `f(v

i

; �

0

)(t) =?' in the dialogue with P

i

on

input f(v

i

; �

0

) and N queries `�

0

(u) =?' during the work on input h�

0

; v

i

; ti". If

n is large enough, we 
an �nd x

0

2 B

n

su
h that

P

i:b

0

i

=1

w

i

�

0

�

0

(0x

0

�

0

(x

0

)) < 1=6

and we 
an �nd y

1

2 B

n

su
h that

P

i:b

0

i

=1

w

i

�

0

�

0

(1x

1

y

1

) < 1=6.

De�ne the partial fun
tions �, � bas follows:

�(x) =

�

�

0

(x); if x 6= x

0

,

unde�ned; if x = x

0

,

�(x) =

�

�

0

(x); if x 6= x

1

,

y

1

; if x = x

1

.
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Then e(��

�

�) = e(��

0

�

�

0

) and F (��

�

�) = 0. The obtained 
ontradi
tion proves the

theorem.
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