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Abstrat. Starting with the paper of Baker, Gill and Solovay [BGS 75℄ in om-

plexity theory, many results have been proved whih separate ertain relativized

omplexity lasses or show that they have no omplete language. All results of this

kind were, in fat, based on lower bounds for boolean deision trees of a ertain type

or for mahines with polylogarithmi restritions on time. The following question

arises: Are these methods of proving \relativized" results universal? In the �rst part

of the present paper we propose a general framework in whih assertions of univer-

sality of this kind may be formulated and proved as onvenient riteria. Using these

riteria we obtain, as easy onsequenes of the known results on boolean deision

trees, some new \relativized" results and new proofs of some known results. In the

seond part of the present paper we apply these general riteria to many partiular

ases. For example, for many of the omplexity lasses studied in the literature all

relativizable inlusions between the lasses are found.

1. Introdution

Most theorems in reursion theory are known to be relativizable. This means

that for any language A, a theorem remains true if we take mahines supplied with

oraleA as the model of omputation. This is not true in omplexity theory. In 1975

in the paper [BGS 75℄, orales A and B were onstruted suh that P

A

6= NP

A

and

P

B

= NP

B

. This means that although we don't know whih of the two assertions

P = NP and P 6= NP is true, neither of them is relativizable. After [BGS 75℄, many

theorems of the following kind were proved (for pairs of relativizable omplexity

lasses K

1

;K

2

): there exist orales A and B suh that K

A

1

6= K

A

2

and K

B

1

= K

B

2

.

Sine many interesting omplexity lasses lie between P and PSPACE, for suh

lasses one an always take the orale B onstruted in [BGS 75℄ as the seond

orale beause in fat P

B

= PSPACE

B

is true for that orale. In 1989 the �rst

non-relativizable theorems in omplexity theory appeared. The �rst of them was

the theorem from [LFKN 89℄: PH � IP. Earlier, in [FS 88℄, it was proved that

9A Co-NP

A

6� IP

A

.

All known proofs of results having the form 9A K

A

1

6= K

A

2

(that is, 9A K

A

1

6� K

A

2

or the onverse) onsist of two parts: the \diagonal" part (onstruting the orale

step by step), whih is the same in all proofs, and the spei� \ombinatorial" part,
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2 NIKOLAI K. VERESHCHAGIN

in whih it is proved that every step an be made. The �rst result of the present

paper is the formalization of this statement. The proof of Theorem 1 in Setion 3 is

a general formulation of the diagonal part of suh proofs. Corollary 1 shows what

ombinatorial assertion is to be proved in every spei� ase.

Theorems of the following form have also appeared in the literature: there exists

an orale A for whih the lass K

A

has no Karp omplete (or Cook omplete)

language. The �rst paper of this kind known to the author is [S 82℄. In that paper

it is proved that there exists an orale A for whih the lass NP

A

\Co-NP

A

has no

Karp omplete language (more preisely, no language omplete under polynomial

many-one redutions relative to A), and there exists an orale A for whih the lass

R

A

has no Karp omplete language.

All we have said about proofs of theorems of the form 9A K

A

1

6� K

A

2

is true for

proofs of nonexistene of omplete languages in omplexity lasses. Theorem 2 in

Setion 4 provides the diagonal part of suh proofs in general form.

Both Theorem 1 and Theorem 2 give the riteria. Theorem 1 is the riterion of

whether

(1.1) 8A K

A

1

� K

A

2

;

while Theorem 2 is the riterion of whether

(1.2) 8A (K

A

2

has a Karp omplete problem for the lass K

A

1

):

Roughly speaking, the riteria are as follows. Let K be a omplexity lass. Let us

replae all polynomial restritions in the de�nition of the lassK by polylogarithmi

ones and replae deision problems (i.e. languages) by separation problems. Denote

by KLOGS the resulting \ounterpart" of the lass K. Then assertion (1.1) is

equivalent to the absolute inlusion K

1

LOGS � K

2

LOGS, and assertion (1.2) is

true i� the lass K

2

LOGS has a language omplete for the lass K

1

LOGS. The

analysis of proofs of relativizable assertions of the form (1.1) (for example, BPP �

�

2

\ �

2

from [S 83℄) shows that the more natural formulations of suh assertions

have the form K

1

LOGS � K

2

LOGS.

Similar riteria exist also for theorems of the following two forms:

(1.3) 8A ( the lass K

A

2

has Cook omplete language for the lass K

A

1

)

and

(1.4) 8A (8L

1

2 K

A

1

9L

2

2 K

A

2

: L

1

is Cook reduible to L

2

);

i.e. \K

A

1

is Cook reduible to K

A

2

".

These riteria are formulated in Setions 5 and 6.

The new approah to relativizable theorems makes the solving of problems of the

forms (1.1){(1.4) easier in both the psyhologial and tehnial sense. In Setions 7,

8 and 9 we asertain, for several known lasses K

1

, K

2

between P and PSPACE to

whih the proposed riteria an be applied, whih of the two assertions|(1.1) or the

negation of (1.1)|is true or is unknown. We do the same thing also for assertions

of the form (1.2), (1.3) and (1.4). Some new positive and negative results results

of this type are proved (we all positive results of the form (1.1){(1.4)). Some

problems of this kind remain open.

Aknowledgements. The author is sinerely grateful to O. V. Verbitsky, An. A. Muh-

nik, A. A. Razborov, A. Kh. Shen and other partiipants of the Kolmogorov seminar

in Mosow Lomonosov University and the Complexity seminar in Steklov institute

for useful omments and to Fred Green for the help in translation into English.
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2. Basi definitions and notation

We denote the set of all words over an alphabet A by A

�

. By B we denote the

set f0; 1g.

A separation problem is any funtion from the set B

�

into the set f0; 1; �g. The

meaning of this de�nition is that we have to separate the set fx j F (x) = 1g from

the set fx j F (x) = 0g. Denote by D(F ) the set fx 2 B

�

j F (x) 6= �g.

We will identify every language L � B

�

with its harateristi funtion, denoted

by the same letter:

L(x) =

�

1; if x 2 L;

0; if x 62 L.

Thus any language an be onsidered as a separation problem. The length of the

word x is denoted by jxj.

Denote dlog

2

ne by logn and let log(0) be 0. Funtions of the form p(log n),

where p is a polynomial, will be alled polylogarithms. Expressions poly(n) and

polylog(n) will denote a polynomial and a polylogarithm, respetively.

We shall study omplexity lasses de�ned by Turing mahines whose running

time is bounded by a polylogarithm of the length of the input. An ordinary Turing

mahine in polylogarithmi time an read only a pre�x of the input word having

polylogarithmi length. Therefore, we will use the model of Turing mahines whih

is ommonly used when time restritions are so small. In this model, the input word

is given as an orale. More preisely, besides the work tape, the mahine has an

additional tape alled the input tape, on whih at the beginning of a omputation

the length of the input word x is written

1

. The mahine may at any moment of

a omputation ask a question of the form `x(i) =?', i.e., it an write down on the

input tape the number i � jxj and then reeive the ith symbol of x, denoted by

x(i), written on the input tape. The time to write down i is added to the total

time but then the \orale" supplies immediately x(i). (We ould onsider another

model in whih the mahine doesn't get the length of the input word, and when

it asks `x(i) =?' with i > jxj it reeives the answer \unde�ned"; evidently, every

mahine working in time t(jxj) an by simulated by a mahine of this new type in

time t(jxj) + (log(jxj))

O(1)

.)

If time restritions are polynomial, then our model is equivalent to ordinary

Turing mahines. By M(x) we will denote the output of M on the input word x.

Our �rst goal is to give the de�nition of the polylogarithmi ounterpart of

a omplexity lass. As an example, we �rst de�ne polylogarithmi ounterparts

of three well known lasses, P, NP and R, and then give the general de�nition.

The polylogarithmi ounterpart of a omplexity lass is always a lass of sepa-

ration problems. If K denotes a omplexity lass aepted in the literature, then

the polylogarithmi ounterpart of this lass is denoted by KLOGS, for example,

PLOGS, NPLOGS and RLOGS.

Thus, let F be a separation problem. Then by de�nition F 2 PLOGS, if there

exists a deterministi Turing mahine M whose omputation time is restrited by

a polylogarithm of the size of the input suh that M(�) = F (�) for all � 2 D(F ).

By a polylogarithmi nondeterministi mahine we mean any nondeterminis-

ti Turing mahine all of whose omputations on input � have no more than

1

Convention: we assume that natural numbers are represented in binary. Moreover, we identify

natural numbers and binary words: a natural number n is identi�ed with the binary notation of

the number n+ 1 without the leading 1.



4 NIKOLAI K. VERESHCHAGIN

polylog(j�j) steps. By de�nition, F 2 NPLOGS if there exists a polylogarith-

mi nondeterministi mahine M suh that if F (�) = 1, then M aepts �, and if

F (�) = 0, then M rejets �.

By a probabilisti polylogarithmi mahine we mean any probabilisti Turing

mahine M whose omputation time on input � is bounded by polylog(j�j) (for all

outomes of oin tossing). By de�nition, F 2 RLOGS if there exists a polylogarith-

mi probabilisti mahine M suh that if F (�) = 1, then Prob [M(�) = 1℄ > 2=3,

and if F (�) = 0, then Prob [M(�) = 1℄ = 0 (if F (�) = �, then this probability an

be arbitrary).

Let us turn to the de�nition of the notion of polylogarithmi ounterpart of a

omplexity lass. To this end we have to �x a general framework, aording to

whih most omplexity lasses between P and PSPACE are de�ned.

To this end onsider the de�nitions of two partiular omplexity lasses (NP

and BPP) in a onvenient form.

2.1 L 2 NP () there exists a polynomial time omputable funtion s : B

�

!

N and a polynomial time prediate P (x; i) suh that x 2 L, 9i � s(x) : P (x; i),

2.2 L 2 BPP () there exists a polynomial time omputable funtion s :

B

�

! N and a polynomial time prediate P (x; i) suh that if x 2 L, then the ratio

�

�

fi 2 Nj1�i�(x);P (x;i)g

�

�

s(x)

is greater than 2=3 and if x 62 L, then this ratio is less than

1=3.

2

Let us denote in both de�nitions by f(x) the sequene of values of the prediate

P (x; i) for i � s(x). Then the membership of x in L is de�ned in terms of the word

f(x). Any bit of the word f(x) an be omputed in time bounded by a polynomial

of jxj given its number. Now we ome to the following de�nition.

Let f be a funtion from B

�

into B

�

, and t : N! N.

De�nition 1. A funtion f is weakly omputable in time t if

(1) the funtion x 7! jf(x)j is omputable in time t(jxj),

(2) the partial binary prediate P (x; i) = (ithbit of the word f(x)) an be om-

puted by a mahine M whih for all x 2 B

�

and all i � jf(x)j works in time

not exeeding t(jxj).

Funtions that are weakly omputable in time poly(n), (polylog(n) and 2

O(n)

,

respetively) are alled weakly polynomial (weakly polylogarithmi and weakly expo-

nential, respetively) . For example, the funtion f(x) = 0

2

jxj

is weakly polynomial

(by 0

n

we denote the word onsisting of n zeros) and the funtion f(x) = x is

weakly polylogarithmi.

Both de�nitions 2.1 and 2.2 have the following form. For a �xed separation

problem F we delare that a language L is in the lass if there exists a weakly

polynomial funtion f suh that L(x) = F (f(x)) for all x 2 B

�

. Let POLY(F )

denote the lass de�ned in this way by means of separation problem F . We say that

a lass K is generated by a separation problem F if K = POLY(F ). For example,

the lass NP is generated by the following separation problem F

NP

:

F

NP

(�) =

�

1; if 9i � j�j �(i) = 1,

0; otherwise.

2

jM j denotes the ardinality of the set M .
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To generate the lass BPP we an take as F the separation problem

F

BPP

(�) =

8

>

<

>

:

1; if #

1

(�) >

2

3

j�j,

0; if #

1

(�) <

1

3

j�j,

�; otherwise,

where #

1

(x) denotes the number of ones in the binary word x.

It is easy to verify that all the lasses P, NP, R, BPP, UP, FewP, �

k

, �P, PP,

PSPACE, MA, AM, IP (without private oin tossing) have the form POLY(F ) for

some F .

Let us de�ne a partial ordering on the set f0; 1; �g assuming that � < 0, � < 1.

De�ne LOGS(F ) as the lass of all separation problemsG suh that for some weakly

polylogarithmi funtion f the following is true: 8� 2 B

�

G(�) � F (f(�)), and de-

�ne LOG(F ) to be the lass of all the languages in LOGS(F ). The lass LOGS(F )

is just alled the polylogarithmi ounterpart of the lass POLY(F ). More preisely,

separation problem F de�nes the pair|the lass POLY(F ) and its polylogarith-

mi ounterpart LOGS(F ) (as we see later, the lass LOGS(F ) is not uniquely

determined by the lass POLY(F )).

Let us turn out to relativized lasses. An orale is any language. An orale

mahine is a Turing mahine having an extra tape alled orale tape; this tape has

a read/write head. That head an write only zeros and ones. To run an orale

mahine on an input we must supply it with an orale. Let A be an orale. Then

mahine works as usual two tape Turing mahine with one exeption. If orale

mahine gets into a ertain state, then the word u written on orale tape (starting

from the �rst ell up to the ell where the head is now) is onsidered as a question

to the orale. In this ase orale provides its answer A(u) in the ell viewed by the

head. The time needed for orale to provide its answer is assumed to be 1.

Let M be an orale mahine and let A be an orale. Denote by M

A

(x) the output

produed by M supplied with orale A on input x, and by t

M

A(x) the running

time neessary to provide this output. Call an orale mahine M polynomial [or

exponential ℄ if there exists a polynomial q(n) [a onstant ℄ suh that t

M

A
(x) �

q(jxj) [t

M

A(x) � 2

jxj+

℄ for all x 2 B

�

and all A � B

�

. A funtion f is alled

polynomial [exponential℄ relative to A, if there exists a polynomial [exponential℄

orale mahine M suh that f(x) = M

A

(x) for all x (that is, M

A

omputes f).

Let A be an orale. We want to relativize the de�nition of the lass POLY(F ).

Let us de�ne the notion of the weak omputability relative to orale A. Namely, in

the de�nition of weak omputability we allow mahine M to all orale A and in

item (1) we allow the funtion jf(x)j to be omputable in time t(jxj) by a mahine

with orale A.

De�nition 2. POLY

A

(F ) is the lass of all languages L suh that L(x) = F (f(x))

for all x 2 B

�

for some funtion f being weakly polynomial relative to A.

3. A riterion of relativizable inlusion of one omplexity

lass into another omplexity lass

The single theorem of this setion laims that a polynomial omplexity lass

K

A

1

is inluded in a polynomial omplexity lass K

A

2

for all orales A if and only

if the (absolute: no orales) inlusion between their polylog-ounterparts holds.
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That theorem is valid for all the lasses of the form POLY

A

(F ) provided that the

separation problem F is nondegenerate in the following sense:

3.1 there exists a weakly polynomial funtion f : N! B

�

suh that jf(n)j = n

and F (f(n)) 6= � for all n 2 N;

3.2 there are two words (denote them zero

F

and one

F

) suh that F (zero

F

) = 0,

F (one

F

) = 1.

All the problems de�ning the omplexity lasses mentioned above are nondegen-

erate.

Theorem 1. If separation problem F satis�es the ondition 3.1 and separation

problem G satis�es the ondition 3.2, then the following are equivalent:

3.3 LOGS(F ) � LOGS(G),

3.4 F 2 LOGS(G), and

3.5 POLY

A

(F ) � POLY

A

(G) for all A � B

�

.

If F is a language (i.e., D(F ) = B

�

), then all these onditions are equivalent to the

following ondition:

3.6 LOG(F ) � LOG(G).

Proof. Obviously, 3.3 implies 3.4. Let us prove that 3.4 implies 3.3. Let F be

in the lass LOGS(G), and let g be a weakly polylogarithmi funtion suh that

F (�) � G(g(�)). Let us prove that LOGS(F ) � LOGS(G). Let H be in LOGS(F )

and f be a weakly polylogarithmi funtion suh that H(�) � F (f(�)). Then

H(�) � G(g(f(�))) for all � 2 B

�

. It is easy to see that g(f(�)) is a weakly

polylogarithmi funtion (the lass of weakly polylogarithmi funtion is losed

under superpositions), therefore, H belongs to LOGS(G).

Evidently, the assertion 3.3 implies the assertion 3.6, and if F is a language, then

3.6 implies 3.4.

Let us prove that 3.4 implies 3.5. Let f be a weakly polylogarithmi funtion

suh that F (�) � G(f(�)). Assume that A is a subset of B

�

and L is an element of

POLY

A

(F ), that is, there exists a funtion g being weakly polynomial relative to A

suh that L(x) = F (g(x)). Consequently, L(x) = G(f(g(x))). It is easy to see that

the funtion f(g(x)) is weakly polynomial relative to A (superposition of a weakly

polylogarithmi funtion and of a funtion being weakly polynomial relative to A

is weakly polynomial relative to A). Hene, L belongs to POLY

A

(G).

Let us prove that if 3.4 is not true, then 3.5 is not true also. Assume that F

is not in LOGS(G). This means that for any separation problem H 2 LOGS(G)

there exists an � 2 B

�

suh that F (�) 6� H(�). Let us prove that, moreover, for

any separation problem H 2 LOGS(G) there exist in�nitely many � 2 B

�

suh

that F (�) 6� H(�). Assume that it is not true, i.e., there exist a number n and

a weakly polylogarithmi funtion f suh that F (�) � G(f(�)) for all � 2 B

�

,

j�j > n. Then the funtion

f

1

(�) =

8

>

<

>

:

f(�); if j�j > n,

zero

G

; if j�j � n, F (�) = 0,

one

G

; otherwise.

is weakly polylogarithmi and F (�) � G(f

1

(�)) for all � 2 B

�

.

Let us �x a funtion enoding pairs of words by words in the following way.

Assume that x is in B

�

. Let us double all the bits of x and add the word \01"
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to the end of the resulting word. Denote the resulting word by �x (for example,

001 = 00001101). The word �xy will be onsidered as the ode of the pair hx; yi.

Obviously, for given �xy we an in polynomial time �nd x and y and for given word

u we an deide in polynomial time whether u has the form �xy. For an orale A

and n 2 N, denote by A

n

the word of length n, whose ith bit is equal to A(�ni).

3

We will onstrut an orale A suh that the language L

A

= fn j F (A

n

) = 1g

belongs to the set POLY

A

(F ) n POLY

A

(G). The assertion L

A

2 POLY

A

(F ) will

follow from the following global assertion:

(G) 8n 2 N F (A

n

) 6= �:

If (G) is true, then L

A

(n) = F (A

n

) for all n. Sine the funtion h(n) = A

n

is

weakly polynomial relative to A, the assertion (G) implies that the language L

A

is

in POLY

A

(F ).

Let us enumerate all the funtions being weakly polynomial relative to orales.

This means that we enumerate pairs of orale mahines involved in the de�nition of

polynomial weak omputability relative to an orale. Denote ith funtion by f

A

i

(x)

(A is onsidered as the seond argument of the funtion). Let E be a polynomial-

time deidable language suh that F (E

n

) 6= � for all n 2 N. Suh a language exists

beause F satis�es the ondition 3.1. We start with A = E to make the ondition

(G) true. Then we make ountable number of steps numbered by 1; 2; : : : . On the

ith step we hange the value of A on a �nite set of words to satisfy the following

loal ondition

(L

i

) 9n 2 N F (A

n

) 6= G(f

A

i

(n)),

being areful not to injure the ondition (G).

Then we �x all the values of A needed to ensure the truth of the assertion ( L

i

)

and also all the values of A that were hanged. This is to be understood as follows.

Evidently, there exists a �nite set U of words suh that for all A

0

� B

�

, if A

0

and A have the same values on all the elements of U , then (L

i

) is true for A

0

. We

�nd suh a U and \label" all its elements and all the elements on whih A's value

was hanged. The values of A on labeled words are alled \�xed" and annot be

hanged later. Thus, when we will make ! steps, we will obtain an orale A suh

that the ondition (G) is true and the ondition ( L

i

) is true for all i 2 N. Evidently,

L

A

2 POLY

A

(F ) n POLY

A

(G) for that A.

So we have to desribe ith step. Let A be the orale onstruted on (i � 1)th

step (with some �xed values).

Assume that � is in B

�

and j�j = n. Denote by A[�℄ the orale where A

n

is

replaed by �, that is,

A[�℄(u) =

�

A(u); if u has not the form �ni, i � n,

�(i); if u = �ni, where i � n.

Set H(�) = G(f

A[�℄

i

(j�j)).

Sine A is polynomial-time deidable (A is obtained from E by �nite number

of hanges), the funtion � 7! f

A[�℄

i

(j�j) is weakly polylogarithmi, therefore, H 2

LOGS(G). Consequently, there exist in�nitely many � 2 B

�

suh that F (�) 6�

H(�). Hene, there exists an � 2 B

�

suh that F (�) 6� H(�) and no value of A on a

3

Reall that we identify natural numbers with binary words.
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word of the form j�ji, i � j�j is �xed. Pik suh an � and replae A with A[�℄. Now

the assertion ( L

i

) is true for n = j�j beause F (A

n

) = F (�) 6� H(�) = G(f

A

i

(n)).

Fix the values of A ensuring the truth of ondition ( L

i

). Note that the asser-

tion (G) is not injured beause F (A

n

) = F (�) and F (�) 6= � (sine F (�) 6� H(�)

and � is the least element in the set f0; 1; �g). The impliation 3.5)3.4 is proved.

Remark 1. All the separation problems F de�ning omplexity lasses studied in the

literature have the following property. If in the de�nition of the lass POLY(F )

we add the extra requirement jf(x)j = 2

poly(jxj)

, (the de�nition of polynomial weak

omputability implies only that jf(x)j � 2

poly(jxj)

), then the lass POLY(F ) does

not hange. Moreover, all those problems F have the following property. For a

separation problem F , de�ne the new separation problem

�

F (�) =

�

F (�); if j�j has the form 2

k

, k 2 N

�; otherwise.

Then for all the lasses studied in the literature, the orresponding separation

problems F satisfy the following ondition:

(3.7) F 2 LOGS(

�

F ):

Note that (3.7) implies POLY

A

(

�

F ) = POLY

A

(F ) for all A (by Theorem 1).

If a separation problem F has the property (3.7), then the onditions 3.3, 3.4,

and 3.5 are equivalent to the ondition

3.8 EXP

A

(F ) � EXP

A

(G) for all A,

where EXP

A

(H) is the lass ontaining all the languages L suh that L(x) =

H(g(x)) for some funtion g weakly exponential relative to A.

Indeed, the impliation 3.4)3.8 is true beause if f(�) is a weakly polylog-

arithmi funtion and g(x) is a funtion weakly exponential relative to A, then

the funtion f(g(x)) is weakly exponential relative to A (beause polylog(2

2

O(n)

) =

poly(2

O(n)

) = 2

O(n)

). Conversely, let us prove the impliation 3.8)3.4. Let F have

the property (3.7) and let 3.4 be false. Then

�

F 62 LOGS(G). Applying the same

arguments as those in the proof of impliation :3.4) :3.5, we an onstrut an

orale A suh that the language L

A

= fn j F (A

2

n

) = 1g is in EXP

A

(F )nEXP

A

(G).

Let us all a mapping A 7! POLY

A

(F ) the manifold generated by F . In general,

any mapping from the set of all orales into the set of families of languages will

be alled a manifold. For a family F of separation problems, de�ne the manifold

POLY

A

(F) =

S

F2F

POLY

A

(F ). De�ne LOGS(F) =

S

F2F

LOGS(F ).

It is easy to see that Theorem 1 an be generalized to families of separation

problems.

Corollary 1. If all the elements of a family F of separation problems have the

property 3.1 and all the elements of a family G of separation problems have the

property 3.2, then the following are equivalent:

3.8 LOGS(F) � LOGS(G)

3.9 POLY

A

(F) � POLY

A

(G) for all A.

Any manifold of the form POLY

A

(F), where F is a family of non-degenerate

separation problems, is alled regular and is alled strongly regular if F is one-

element. Corollary 1 implies that a regular manifold POLY

A

(F ) de�nes family F
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uniquely up to the weak polylogarithmi equivalene, that is,

(8A POLY

A

(F) = POLY

A

(G)) () LOGS(F) = LOGS(G):

This is not true for absolute lasses: there exist separation problems F

1

and F

2

suh

that POLY(F

1

) = POLY(F

2

) and LOGS(F

1

) 6= LOGS(F

2

). In other words, there

exists a nonrelativizable assertion of the form POLY(F

1

) = POLY(F

2

), namely

the assertion IP = PSPACE proven by Shamir in [Sh 90℄. Both the lasses IP

and PSPACE an be de�ned in our framework as shown in x7.

Consider the following appliation of Theorem 1 (it appeared in fat in [BGS

75℄). Suppose we wish to prove that there exists an orale A suh that P

A

6= NP

A

.

Aording to Theorem 1, it is enough to prove that F

NP

is not in PLOG. In other

words, we have to prove that no mahine an in time polylogarithmi of j�j reognize

if one ours in �. Assume that a polylogarithmi-time mahine M reognizes

whether one ours in �. Run the mahine M on the input word ontaining only

zeros and long enough (its length n should be greater than the running time of M

on words of length n; suh an n does exist beause n � polylog(n) ! +1). The

output of the mahine should be 0. But sine M had not queried at least one bit

of �, we an fool it by hanging that bit of � to 1.

In this proof we have used only that the number of bits queried by the mahine

M working on input � is restrited by a polylogarithm of j�j, and the running

time an be arbitrary large. This is true for all the known proofs of the results of

the form 9A K

A

1

6� K

A

2

. Let us formalize this laim. Replae in the De�nition 1

the restritions for time with the restritions for the number of queried bits of x

and denote by n.u.LOGS(G) the lass obtained from the lass LOGS(G) after this

replaement. Then to prove that 9A POLY

A

(F ) 6� POLY

A

(G) it is suÆient to

prove that F is not in n.u.LOGS(G) beause n.u.LOGS(G) � LOGS(G). Assertions

onerned with the number of queries an be usually proved by ounting arguments.

Let us give the formal de�nition of the lass n.u.LOGS(F ) using another model

of omputation, namely, deision trees.

Let x

1

; : : : ; x

n

be boolean variables and let M be a set. An (M;x

1

; : : : ; x

n

)-tree

is a �nite binary rooted tree whose leaves are labeled by elements of M , whose

internal verties are labeled by variables from the set fx

1

; : : : ; x

n

g, and for every

internal vertex, one of the two edges going from that vertex to its sons is labeled by

0 and the other is labeled by 1. An (M;x

1

; : : : ; x

n

)-tree T omputes the funtion

f : B

n

!M de�ned as follows. Let b

1

: : : b

n

belong to B. Evidently, there exists a

single path in the tree starting at the root and going to a leaf suh that for every

pair hu; vi of onsequent verties in this path if u is labeled by x

i

, then the edge

hu; vi is labeled by b

i

. The value f(b

1

: : : b

n

) is de�ned as the label of the end leaf

in this path. We will denote the de�ned funtion by the same letter as the tree

itself, i.e., T (x

1

: : : x

n

). The omplexity of a tree is de�ned as its height.

A partial funtion f : B

n

! M is omputable in t queries if there exists an

(M;x

1

; : : : ; x

n

)-tree T of height at most t suh that the funtion T (x

1

; : : : ; x

n

) ex-

tends the funtion f(x

1

: : : x

n

). Replae in De�nition 1 the notion of omputability

in time t(jxj) with the notion of omputability in t(jxj) queries. The resulting

notion is alled the non-uniform weak omputability in time t(n).

De�nition 3. n.u.LOGS(G) is the lass of all the separation problems F suh that

F (�) � G(f(�)) for some non-uniform weakly polylogarithmi funtion f and for

all � 2 B

�

.
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Evidently, LOGS(G) � n.u.LOGS(F ), and we obtain an easy orollary from

Theorem 1.

Corollary 2. If

(3.11) F =2 n.u.LOGS(G);

then the negation of 3.5 is true.

It is the assertion (3.11) that is proved by ounting arguments in all the known

proofs of theorems of the form

9A POLY

A

(F ) 6� POLY

A

(G):

4. The riterion of relativizable existene of

an m-omplete language in a omplexity lass

Denote the polynomial many-one reduibility (Karp reduibility) by �

p

m

. Reall

that L

1

�

p

m

L

2

if there exists a polynomial-time omputable funtion f suh that

x 2 L

1

, f(x) 2 L

2

. If we allow the funtion f to by omputable by a polynomial-

time mahine with an orale A, then the resulting reduibility is denoted by �

p;A

m

.

Let � stand for a reduibility on separation problems. We say that a separation

problem H is �-hard for a lass K of separation problems if any separation problem

in K is �-reduible to H . If H is �-hard for K and H is in K, then we say that H

is �-omplete in K. Call a lass K

1

of separation problems �-hard for a lass K

2

of separation problems, if K

1

has a problem being �-hard for K

2

.

The following theorem gives a riterion of whether the lass POLY

A

(G) is �

p;A

m

-

hard for the lass POLY

A

(F ) for all orales A. To make its formulation more

natural let us introdue the notion of weak polylogarithmi reduibility, whih is

denoted by �

l

m

. We say that F �

l

m

G if F 2 LOGS(G), that is, reduing funtions

are the polylogarithmi ones. It is easy to see that the relation �

l

m

is reexive

and transitive and that every separation problem F is �

l

m

-omplete in the lass

LOGS(F ). We say that a separation problem G solves a separation problem F if

F (x) � G(x) for all x 2 B

�

.

Theorem 2. If a separation problem F satis�es the ondition 3.1 and a separation

problem G satis�es the ondition 3.2, then the following are equivalent:

4.1 LOG(G) �

l

m

-hard for LOGS(F ),

4.2 F has a solution in LOG(G),

4.3 the lass POLY

A

(G) is �

p;A

m

-hard for the lass POLY

A

(F ) for any orale

A.

If F is a language, then all these assertions are equivalent to the assertion:

4.4 the lass LOG(G) is �

l

m

-hard for the lass LOG(F ).

Proof. Let us prove the impliation 4.1)4.2. Assume that 4.1 is true, that is, there

exists a separation problem H 2 LOGS(G) suh that any separation problem in

the lass LOGS(F ) is �

l

m

-reduible to H . Then F �

l

m

H . Let g : B

�

! B

�

be

a funtion reduing F to H . Then the language H(g(�)) solves F and belongs to

LOG(G).

Let us prove the impliation 4.2)4.1. Assume that a language H 2 LOG(G)

solves F . Then the language H is �

l

m

-hard for the lass LOGS(F ) beause the

problem F is �

l

m

-omplete in LOGS(F ).
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Evidently, 4.1 implies 4.4. The impliation 4.4)4.2 in the ase when F is a

language an be proved just as the impliation 4.1)4.2 is proved beause F 2

LOG(F ) in this ase.

Let us prove the impliation 4.2)4.3.

Let F have a solution H 2 LOG(G). Assume that A � B

�

. Theorem 1 implies

that POLY

A

(F ) � POLY

A

(H) � POLY

A

(G) (note that in the proof of the impli-

ation 3.4)3.5 we did not used onditions 3.1 and 3.2). Therefore, it suÆes to

prove that the lass POLY

A

(H) is �

p;A

m

-hard for the lass POLY

A

(F ). In fat, we

will prove that the lass POLY

A

(H) has an �

p

m

-omplete language. Let g

A

0

, g

A

1

,

g

A

2

, : : : be an enumeration of all the funtions being weakly polynomial relative to

A. Set L

A

i

(x) = H(g

A

i

(x)). By de�nition, POLY

A

(H) = fL

A

i

j i 2 Ng.

Let p

i

(jxj) be a polynomial upper bound for the time of weak omputation of

the funtion g

A

i

(x) given

�

i�x. We will prove that there exists a funtion f

A

weakly

polynomial relative to A suh that f

A

(

�

i�x0

p

i

(jxj)

) = g

A

i

(x) for all i 2 N and for

all x 2 B

�

Suppose that we have already proved the existene of suh a funtion

f

A

. Then let L

A

(u) = H(f

A

(u)). By de�nition, L

A

2 POLY

A

(H). On the other

hand, L

A

is �

p

m

-omplete in the lass POLY

A

(H) beause for all i 2 N the funtion

x 7!

�

i�x0

p

i

(jxj)

is polynomial-time omputable and redues L

A

i

to L

A

.

Let us prove the existene of suh a funtion f

A

. Let M

A

be a mahine that in

time p

i

(jxj) omputes the length of the word g

A

i

(x) for any given

�

i�x, and let N

A

be a mahine that in time p

i

(jxj) omputes the jth bit of the word g

A

i

(x) for any

given

�

i�xj. Then the length of the word f

A

(w) an be omputed by the following

mahine

�

M

A

: for given word w hek �rst whether w has the form

�

i�x0

t

, and if not,

output 0. Otherwise �nd i, x, and t and run M

A

on

�

i�x. If mahine M

A

produes

a result within time t, then output that result, otherwise output 0. The following

mahine

�

N

A

outputs the jth bit of the word f

A

(w) for any given hw; ji: run �rst

�

M

A

on w, let n stand for the result produed by

�

M

A

. If n = 0, then output 0.

Otherwise �nd i, x, and t suh that w =

�

i�x0

t

and run N

A

on

�

i�xj. If the mahine

N

A

produes a result within time t, then output that result. Otherwise output 0.

Let us prove that if 4.2 is false, then 4.3 is false. Assume that F has no solutions

in the lass LOG(G). Let us onstrut an orale A suh that the lass POLY

A

(G)

has no �

p;A

m

-hard language for the lass POLY

A

(F ). Let f

A

0

, f

A

1

, : : : , f

A

i

, : : : be

an enumeration of all the funtions being weakly polynomial relative to orale A

and let m

A

0

, m

A

1

, : : : , m

A

j

, : : : be an enumeration of all the �

p;A

m

-reduing funtions

(that is, all the funtions of the type B

�

! B

�

being polynomial relative to A).

Assume that A � B

�

. Call the language A

i

= fx j

�

ix 2 Ag the ith omponent of A

and denote by L

i

(A) the language fn j F ((A

i

)

n

) = 1g. Reall that for C � B

�

C

n

stands for the word of length n, whose jth bit is equal to C(�nj). It's lear that it

suÆes to onstrut an orale A suh that for all i 2 N, at least one of the following

two assertions is true:

(L

i

1

) G(f

A

i

(y)) = � for some y 2 B

�

;

and

(�) the language L

i

(A) is in POLY

A

(F ) and is not �

p;A

m

-reduible to the sepa-

ration problem G(f

A

i

(y)).

The ondition (L

1

i

) is loal, therefore we denote it by (L

1

i

). To make the ondition

(�) true it suÆes to ensure one global ondition

(G

i

) F ((A

i

)

n

) 6= � for all n 2 N
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and the following ountable family of loal assertions

(L

2

ij

) 9n 2 N F ((A

i

)

n

) 6= G(f

A

i

(m

A

j

(1

n

))); j 2 N:

Thus we have to onstrut an orale A suh that for all pairs (i; j) 2 N

2

at least

one of the two assertions (L

1

i

) and (G

i

)&(L

2

ij

) is true.

Let us start with the orale A being a polynomial-time deidable language suh

that for all i the assertion (G

i

) is true. Then we �x an enumeration of the set N

2

and make ountable number of steps enumerated by pairs (i; j). During the step

(i; j) we rede�ne the ith omponent of A on a �nite number of words to make the

assertion ( L

1

i

) or the assertion (L

2

ij

) true. Evidently, if for some i there exists j

suh that we have satis�ed the ondition (L

1

i

) on the step (i; j), then we an skip

the remaining steps (i; j

0

). On eah step we will �x the value of A on some words.

Let us explain what we do during the step number (i; j). Let A be the orale we

have after the previous step (with a �nite set of �xed values). Consider two ases:

1st ase: it is possible to hange non-�xed values of the ith omponent of A to

make (L

1

i

) true. Evidently, in this ase it is enough to rede�ne only a �nite number

of non-�xed values of A

i

to make (L

1

i

) true. Make those hanges of A

i

and �x a

�nite number of values of A to guarantee the truth of (L

1

i

). Sine A

i

0

is not hanged

for all i

0

6= i, all the assertions (G

i

0

) for all i

0

6= i remain true.

2nd ase: for any hanges of non-�xed values of A

i

the assertion (L

1

i

) remains

false. Assume that � 2 B

�

. Let B � B

�

stand for the orale suh that B

i

0

= A

i

0

for i

0

6= i and B

i

= (A

i

)[�℄ (let us remind that the notation C[�℄ is de�ned in the

proof Theorem 1). Denote B by A[�; i℄. Consider the language

H = f� 2 B

�

j G(f

A[�;i℄

i

(m

A[�;i℄

j

(j�j))) = 1g:

Let us prove that H 2 LOG(G). Call � 2 B

�

free if no value of A on a word of the

form j�ji, i � j�j, is �xed (that is, we an replae A with A[�; i℄ without hanging

�xed values). Note that the set of non-free values is �nite. For all the free � we

have G(f

A[�;i℄

i

(y)) 6= � for all y 2 B

�

. In partiular, G(f

A[�;i℄

i

(m

A[�;i℄

j

(j�j))) 6= �

for any free �. The funtion � 7! f

A[�;i℄

i

(m

A[�;i℄

j

(j�j)) is weakly polylogarithmi

(beause A is obtained from a polynomial-time deidable language by hanging

�nite number of values). Therefore the funtion

g(�) =

8

>

<

>

:

f

A[�;i℄

i

(m

A[�;i℄

j

(j�j)) if � is free,

one

G

if � is not free and � 2 H ,

zero

G

if � is not free and � 62 H ,

is weakly polylogarithmi, and H(�) = G(g(�)) for all � 2 B

�

. Hene H 2

LOG(G).

Thus, there exist in�nitely many � suh that F (�) 6� H(�). Pik a free � suh

that F (�) 6� H(�). Then for n = j�j we have

F (((A[�; i℄)

i

)

n

) = F (�) 6� H(�) = G(f

A[�;i℄

i

(m

A[�;i℄

j

(n))):

Replae A with A[�; i℄ and �x all the values of A whih the value of f

A

i

(m

A

j

(n))

depends on, and �x the values of A on all the words of the form

�

i�nj, j � n. Thus we

have made the assertion (L

2

ij

) true. And the assertion (G

i

) was not injured beause

F (�) 6= �. Sine we have rede�ned only ith omponent of A all other assertions of

the form (G

i

0

) were not injured.

The impliation 4.3)4.2 is proved.
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Corollary 3. If F is a language, then the lass POLY

A

(F ) has a �

p

m

-omplete

language.

Remark 2. It is lear from the proof of Theorem 2 that in the ondition 4.3, we an

replae the �

p;A

m

-reduibility by the �

p

m

-reduibility.

Remark 3. It is lear from the proof of Theorem 2 that for any sequene fhF

i

; G

i

ig,

i = 0; 1; 2; : : : of pairs of separation problems suh that F

i

has no solution in

LOG(G

i

), we an onstrut an orale A suh that the lass POLY

A

(G

i

) is not �

p;A

m

-

hard for the lass POLY

A

(F

i

) for all i. To do so we have to onsider for all i the

ountable number of omponents A

i;j

= fx 2 B

�

j

�

i

�

jx 2 Ag, j 2 N. The same is

true for Theorem 1 and for Theorems 3 and 4 below. We an also onstrut an orale

relative to whih negative assertions of di�erent types are true simultaneously. For

example, if for all i there exists an orale A

i

suh that POLY

A

i

(F

i

) 6� POLY

A

i

(G

i

)

and for all j there exists an orale B

j

suh that the lass POLY

B

j

(H

j

) is not �

p;B

j

m

-

hard for the lass POLY

B

j

(J

j

), then there exists a single orale A relative to whih

all these assertions are true.

Corollary 4. If for nondegenerate separation problems F and G the assertion

(4.5) Fhas no solution in the lass n.u.LOGS(G);

is true, then there exists an orale A suh that the lass POLY

A

(G) has no �

p;A

m

-

hard language for the lass POLY

A

(F ).

The assertion (4.5) is the assertion usually proved by ounting arguments when

one proves that there exists A suh that the lass POLY

A

(G) is not �

p;A

m

-hard for

the lass POLY

A

(F ).

Example. In [N 89℄, it was proved that n.u.BPPLOG = n.u.PLOG. Obviously,

the separation problem F

R

de�ning the lass R has no solution in the lass n.u.PLOG.

Consequently, there exists an orale A suh that the lass BPP

A

has no �

p;A

m

-hard

language for the lass R

A

.

Remark 4. If we replae in the statement of Theorem 2 the separation problems F

and G by ountable lasses F and G of separation problems then the impliation

4.3)4.1 remains true. To keep the impliation 4.1)4.3 true, we have to strengthen

the ondition 4.1 as follows. Replae the ondition 4.1 by the following ondition:

\there exist a language H in LOG(G) and a omputable funtion f(i; �) suh that

for any �xed i the funtion � 7! f(i; �) is weakly polylogarithmi and redues the

ith separation problem in F to H".

5. A riterion of whether a omplexity lass is

Turing reduible to another omplexity lass

Denote by �

p

T

the polynomial Turing reduibility (Cook reduibility) and denote

by �

p;A

T

the polynomial Turing reduibility relative to orale A. Reall that L

1

�

p;A

T

L

2

if there exists a polynomial-time Turing mahine M having two orales A and L

2

and reognizing L

1

.

Let � stand for some type of reduibility. Let us all a lass K

1

to be �-reduible

to a lass K

2

(notation: K

1

� K

2

) if 8L

1

2 K

1

9L

2

2 K

2

L

1

� L

2

.
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To formulate a theorem giving a riterion of whether K

1

�

p;A

T

K

2

for all orales A

we de�ne the polylogarithmi version of polynomial-time Turing reduibility, whih

is more exible ompared with the polylogarithmi many-one reduibility.

A separation problem F is weakly polylogarithmi T-reduible to a separation

problem G (F �

l

T

G in symbols) if there exist a polynomial-time Turing orale

mahine M and a funtion f : B

�

� B

�

! B

�

suh that 1) the value f(y; �) an

be weakly omputed in time poly(jyj + log j�j) for given y and � and 2) for all

� 2 D(F ) the following two assertions are true:

G(f(y; �)) 6= � for all y 2 B

�

;(5.1)

F (�) = M

G(f(�;�))

(j�j);(5.2)

where G(f(�; �)) stands for the language fy 2 B

�

j G(f(y; �)) = 1g.

We all a pair hM; fi a pair reduing F to H if the onditions (5.1) and (5.2)

are true for all � 2 D(F ). Note that if there exists a pair hM; fi suh that the

onditions (5.1) and (5.2) are true for all but �nitely many � 2 D(F ), then F �

l

T

G.

We denote by hM; fi

G

(�) the output of M on input j�j with orale G(f(�; �)).

Obviously, the binary relation �

l

T

is reexive and transitive. It is lear that

F �

l

m

G) F �

l

T

G.

Theorem 3. If a separation problem F satis�es the ondition 3.1 and a separation

problem G satis�es the ondition 3.2, then the following are equivalent:

5.3 LOGS(F ) �

l

T

LOGS(G),

5.4 F �

l

T

G,

5.5 POLY

A

(F ) �

p;A

T

POLY

A

(G) for all orales A.

If F is a language, then all three assertions are equivalent to the assertion

5.6 LOG(F ) �

l

T

LOG(G).

Proof. Evidently, the onditions 5.3 and 5.4 are equivalent.

Assume that F is a language. Then the impliation 5.6)5.4 is true. On the

other hand, assume that 5.6 is true, that is, F �

l

T

G. Let hM; fi be a pair reduing

F to G. Let l(n) be a polylogarithmi upper bound for the length of queries to

orale made by M on the input n 2 N. Consider the language H = f�x� j jxj �

l(j�j); G(f(x; �)) = 1g. Let us prove that H belongs to LOG(G). Sine D(F ) = B

�

,

we have G(f(x; �)) 6= � for all x; � 2 B

�

. Therefore, H(�) = G(h(�)), where

h(�) =

�

f(x; �) if � = �x�; x � l(j�j);

zero

G

if � has not the form �x�, where x � l(j�j).

For a given � we an deide in time polylog(j�j) if � has the form �x�, jxj � l(j�j).

Consequently, h is a weakly polylogarithmi funtion, hene, we haveH 2 LOG(G).

Set g(x; �) = �x�. Obviously, g(x; �) an be weakly omputed in time poly(jxj+

log j�j). The pair hM; gi redues F to H , therefore fFg �

l

T

LOG(G). As F is

�

l

m

-omplete in LOG(F ), we obtain LOG(F ) �

l

T

LOG(G).

Let us prove that 5.4 implies 5.5. Assume that F �

l

T

G. Denote by hM; fi a pair

reduing F to G. Let A be an orale and let L a language in the lass POLY

A

(F ).

Let g be a weakly polynomial relative to A funtion suh that L(x) = F (g(x)). Then

L(x) = M

G(f(�;g(x)))

(jg(x)j) for all x 2 B

�

. Sine the funtion jg(x)j is polynomial-

time omputable relative to A, the language L is �

p;A

T

-reduible to the language
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f�yg(x) j G(f(y; g(x))) = 1g, whih is in POLY

A

(G) beause G(f(y; g(x))) 6= � for

all x; y 2 B

�

and the funtion �yx 7! f(y; g(x)) is weakly polynomial relative to A.

Let us prove the impliation :5.4) :5.5. Assume that F 6�

l

T

G. Let us prove

that 5.5 is false. Note that in the assertion 5.5 the �

p;A

T

-reduibility an be replaed

by the �

p

T

-reduibility. Indeed, if a language L

1

is �

p;A

T

-reduible to a language L

in POLY

A

(G), then L

1

is �

p

T

-reduible to the language L�A = f0x j x 2 Lg[f1x j

x 2 Ag, whih is in POLY

A

(G) (beause A 2 POLY

A

(G) provided G satis�es the

ondition 3.2 and the lass POLY

A

(G) is losed under the operation � for any A

and G).

It suÆes to onstrut an orale A suh that the following two onditions are

true:

(G) A

n

2 D(F ) for all n,

and

(L) the language fn j F (A

n

) = 1g is not �

p

T

-reduible to any language in

POLY

A

(G).

Let M

B

1

, M

B

2

, : : : , M

B

j

, : : : be an enumeration of all the polynomial-time orale

Turing mahines. Let f

A

1

(x), f

A

2

(x), : : : , f

A

i

(x), : : : be an enumeration of all the

weakly polynomial relative to A funtions. We want to onstrut an orale A suh

that the following assertion (L

ij

) is true for all i; j 2 N:

(L

ij

) 9n 2 N F (A

n

) 6= M

G(f

A

i

(�))

j

(n) _ 9y G(f

A

i

(y)) = �:

At �rst, let A be equal to a polynomial-time deidable language satisfying the

ondition (G). Make ! steps enumerated by pairs (i; j) 2 N

2

.

Step (i; j). Let A be the orale (�x values inluded) we have after the previous

step. Call � 2 B

�

free if no value of A on a word of the form j�jk, k � j�j is �xed.

Consider two ases.

1st ase: there exist free � 2 D(F ) and y 2 B

�

suh that F (�) 6= � and

G(f

A[�℄

i

(y)) = �. Then replae A by A[�℄ and �x �nite number of values of A to

guarantee the validity of the assertion (L

ij

). Note that the ondition (G) has not

been injured.

2nd ase: G(f

A[�℄

i

(y)) 6= � for all y 2 B

�

for all free � 2 D(F ). Let us prove

that there exists a free � 2 D(F ) suh that F (�) 6= M

G(f

A[�℄

i

(�))

j

(j�j). Indeed,

otherwise F (�) = M

G(f

A[�℄

i

(�))

j

(j�j) for all � 2 D(F ). Then the funtion g(y; �) =

f

A[�℄

i

(y) is weakly omputable in time poly(jyj + log j�j) and for the pair hM; gi

the onditions (5.1) and (5.2) are ful�lled for all the free � 2 D(F ). Therefore,

F �

l

T

G and we get a ontradition. After that the proof goes similar to the proof

of Theorem 1.

6. The riterion of whether a omplexity lass has

Turing hard language for another omplexity lass

Theorem 4. If a separation problem F satis�es the ondition 3.1 and a separation

problem G satis�es the ondition 3.2, then the following are equivalent:

6.1 the lass LOG(G) is �

l

T

-hard for the lass LOGS(F ),

6.2 the lass LOG(G) has a language whih F is �

l

T

-reduible to,
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6.3 the lass POLY

A

(G) is �

p;A

T

-hard for the lass POLY

A

(F ) for all orales

A.

If F is a language, then all the three assertions are equivalent to the assertion

6.4 LOG(G) is �

l

T

-hard for LOG(F ).

Proof. Evidently, the assertions 6.1 and 6.2 are equivalent and if F is a language,

then they both are equivalent to the assertion 6.4.

Let us prove the impliation 6.2)6.3. Assume that F �

l

T

H 2 LOG(G). If H

does not satisfy the ondition 3.2, then F 2 PLOG and therefore the assertion 6.3 is

true. Otherwise, Theorem 2 implies that for any orale A the lass POLY

A

(H) has

a �

p

m

-omplete language. Theorem 3 implies that POLY

A

(F ) �

p;A

T

POLY

A

(H),

onsequently, the lass POLY

A

(G) is �

p;A

T

-hard for the lass POLY

A

(F ).

Let us prove that the assertion 6.3 implies the assertion 6.2. Similar to Theo-

rem 4, we an replae �

p;A

T

-reduibility by the �

p

T

-reduibility in 6.3.

Assume that 6.2 is false, that is, F is �

l

T

-reduible to no language in the lass

LOG(G).

We onstrut an orale A suh that the lass POLY

A

(G) has no language being

�

p

T

-hard for the lass POLY

A

(F ). Let f

A

0

(y), f

A

1

(y), : : : , f

A

i

(y), : : : be an enumer-

ation of all the weakly polynomial relative to A funtions. Split A into omponents

A

i

= fx j

�

ix 2 Ag. It suÆes to de�ne A in suh a way that for any i 2 N at least

one of the following two assertions holds:

(L

1

i

) G(f

A

i

(y)) = � for some y 2 B

�

,

and

(�) the language L

i

(A) = fn j F (A

i

n

) = 1g is in the lass POLY

A

(F ) and is not

�

p

T

-reduible to the separation problem G(f

A

i

(y)).

Let M

L

0

, M

L

1

, : : : , M

L

j

, : : : be an enumeration of all the polynomial-time orale

Turing mahines.

To make the assertion (�) true it suÆes to satisfy the following requirement

(G

i

):

(G

i

) F (A

i

n

) 6= � for all n,

and at the same time to satisfy the following ondition (L

2

ij

) for all j 2 N:

(L

2

ij

) 9n 2 N F (A

i

n

) 6= M

G(f

A

i

(�))

j

(n):

To onstrut an orale A satisfying (L

1

i

) or (G

i

)&(L

2

ij

) for all pairs (i; j) we an

follow the proof of Theorem 2. The only di�erene appears in the seond ase

when the step (i; j) is desribed. Reall that in the seond ase G(f

A

i

(y)) 6= � for

all y 2 B

�

and for all variations of non-�xed values of A

i

. We all a word � 2 B

�

free if no value of A

i

on a word of the form j�jj, j � j�j, is �xed. We have to prove

that there exists a free � 2 D(F ) suh that F (�) 6= M

G(f

A[�;i℄

i

(�))

j

(j�j). Assume

that there exists no suh �. Denote by l(n) a polylogarithmi upper bound for the

length of queries made by the mahine M on input n. Consider the language

H = f�y� : jyj � l(j�j); G(f

A[�;i℄

i

(y)) = 1g

and the funtion g(y; �) = �y�. Sine G(f

A[�;i℄

i

(y)) 6= � for all free � and for all

y 2 B

�

, the language H is in LOG(G). Then for the pair hM

j

; gi assertions (5.1)

and (5.2) are true for all free � 2 B

�

. Therefore, F �

l

T

H . This ontradition

�nishes the proof.



RELATIVIZABLE AND NONRELATIVIZABLE THEOREMS 17

Corollary 5. If F 6�

l

T

n.u.LOG(G), then there exists an orale A suh that the

lass POLY

A

(G) is not �

p;A

T

-hard for the lass POLY

A

(F ).

Remark 5. Let K

1

, K

2

be lasses of languages and let A be an orale. In the paper

[A-S 86℄ it is noted that if the lass K

2

is downward losed under �

p;A

T

-redutions,

then the lass K

2

is �

p;A

T

-hard for a lass K

1

if and only if K

2

is �

p

m

-hard for

K

1

. Indeed, suppose that L is a language in K

2

whih all the languages in K

1

are

�

p;A

T

-reduible to. Then onsider the language

L

1

= f

�

i�x0

t

jM

A;L

i

on input x outputs 1 in � t stepsg;

where M

0

, M

1

, : : : is a numeration of polynomial-time Turing mahines having two

orales. All the languages in the lass K

1

are �

p

m

-reduible to L

1

. On the other

hand, L

1

�

p;A

T

L, hene, L

1

2 K

2

holds.

7. Relativizable inlusions between partiular omplexity lasses

In this setion we onsider many of the regular manifolds lying between P

A

and

PSPACE

A

(the only exeption is the manifold Few

A

; the author does not know

whether this manifold is regular). As it was mentioned in Corollary 1, all the

partiular omplexity lasses studied in the literature an be generated by means

of separation problems whih are not equal to � only on the words of length 2

n

,

n 2 N. To simplify the notation, we onsider in the sequel only separation problems

satisfying this requirement. Denote B

2

n

by F

n

and

S

1

i=0

F

n

by F. We enumerate

the bits of a word � 2 F

n

by binary words of length n rather than by the numbers

from 1 to 2

n

. For a word � in F by k�k we mean log

2

j�j. We all k�k the norm of

�. While de�ning partiular separation problems we keep the following agreement:

if the problem under onsideration is de�ned only on a set M � B

�

, then its value

on all the words from B

�

nM is equal to � (that is, the default value is �).

Consider the following relativized omplexity lasses: UP

A

, Co-UP

A

, UP

A

\

Co-UP

A

, FewP

A

, Co-FewP

A

, FewP

A

\Co-FewP

A

, Few

A

, �P

A

, R

A

, Co-R

A

, R

A

\

Co-R

A

, NP

A

, Co-NP

A

, NP

A

\Co-NP

A

, BPP

A

, MA

A

, Co-MA

A

, MA

A

\Co-MA

A

,

AM

A

, Co-AM

A

, AM

A

\ Co-AM

A

, PP

A

, �

A

k

, �

A

k

, �

A

k

\ �

A

k

(k � 2), IP

A

, Co-IP

A

,

IP

A

\ Co-IP

A

, PH

A

, PSPACE

A

.

Below we remind the de�nitions of some omplexity lasses from this list and

give some omments.

1. UP

A

is the manifold generated by the following separation problem:

F

UP

(�) =

8

>

<

>

:

1; if #

1

(�) = 1,

0; if #

1

(�) = 0,

�; otherwise.

2. FewP

A


 POLY

A

(F), where F onsists of all the separation problems F

suh that

F (�) =

8

>

<

>

:

1; if 0 < #

1

(�) � p(k�k),

0; if #

1

(�) = 0,

�; otherwise,

where p is a polynomial.



18 NIKOLAI K. VERESHCHAGIN

3. Few

A

is the lass de�ned in the paper [CH 90℄ as follows:

a language L is in the lass Few

A

if there exist a funtion f

A

being weakly polyno-

mial relative to A, a polynomial q and a prediate R

A

de�ned on the set B

�

�N

being polynomial-time omputable relative to A, suh that L(x) = R

A

(x;#

1

f

A

(x))

and #

1

(f

A

(x)) � q(jxj) for all x 2 B

�

. It is unknown if the manifold Few

A

is reg-

ular.

4. �P

A


 POLY

A

(PARITY), where

PARITY(�) =

�

0; if #

1

(�) is even,

1; otherwise.

5. AM

A

is the abbreviation for the lass AM[2℄

A

. The lass AM

A

is generated

by the following separation problem F

AM

. Let M

d

x 2 M:P (x) mean that jfx 2

M : P (x)gj > d � jM j. Then for � 2 F

2n

,

F

AM

(�) =

8

>

<

>

:

1; if M

2=3

u 2 B

n

9v 2 B

n

�(uv) = 1,

0; if M

2=3

u 2 B

n

8v 2 B

n

�(uv) = 0,

�; otherwise,

where uv stands for the onatenation of words u and v. Denote the lass LOGS(F

AM

)

by AMLOGS.

6. MA

A

is the lass generated by the separation problem

F

AM

(�) =

8

>

<

>

:

1; if 9u 2 B

n

M

2=3

v 2 B

n

�(uv) = 1;

0; if 8u 2 B

n

M

2=3

v 2 B

n

�(uv) = 0;

�; otherwise,

where � 2 F

2n

.

7. Let us prove that the manifold PSPACE

A

has the form POLY

A

(F ).

It is well known that any language L in PSPACE

A

an be represented as follows:

L = fx j 9y

1

2 B

n

8y

2

2 B

n

� � �Qy

n

2 B

n

P

A

(x; y

1

y

2

� � � y

n

); where n = p(jxj)g;

where P

A

(x; u) is a prediate being polynomial-time omputable relative to A

and p(m) is a polynomial.

The onverse is true, too. Therefore, we an take the separation problem

F

PSPACE

(�) =

8

>

<

>

:

1; if there exists n 2 N suh that k�k = n

2

and

9y

1

2 B

n

8y

2

2 B

n

� � �Qy

n

2 B

n

�(y

1

y

2

� � � y

n

) = 1

0; otherwise.

It is lear that POLY

A

(F

PSPACE

) = PSPACE

A

and LOG(F

PSPACE

) is the lass of

languages that an be reognized within polylogarithmi spae.

8. Let us prove that the manifold IP

A

an be represented in the form POLY

A

(F ).

Take the following separation problem F

IP

: on words � 2 F of length 2

2n

2

it is

de�ned as follows

F

IP

(�) =

8

>

>

>

>

>

<

>

>

>

>

>

:

1; if 9P : B

�

! B

n

Prob [�(r

1

r

2

� � � r

n

P (r

1

)P (r

1

r

2

) � � �P (r

1

r

2

� � � r

n

)) = 1℄ > 2=3;

0; if 8P : B

�

! B

n

Prob [�(r

1

r

2

� � � r

n

P (r

1

)P (r

1

r

2

) � � �P (r

1

r

2

� � � r

n

)) = 1℄ < 1=3;

�; otherwise,
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(where the probability is onsidered with respet to the uniform distribution in

r

1

� � � r

n

).

Then POLY

A

(F

IP

) = IP

A

.

To explain the intuitive meaning of the de�nition of F

IP

, let us remind the

de�nition of the lass IP

A

aording to [B 85℄ and onvert it to a onvenient form.

By a Veri�er we mean a pair V = (q;Q), where Q is a polynomial-time omputable

prediate on B

�

�B

�

�B

�

and q : N! N is a polynomial. Any funtion P : B

�

!

B

�

is alled a Prover. Assume that x 2 B

�

, jxj = m. For a sequene r

1

; : : : ; r

q(m)

of q(m) words of length q(m), de�ne the answer of (P , V ) on the input x and

random inputs r

1

; : : : ; r

q(m)

as follows. For all i � q(m) set

p

i

= P (r

1

� � � r

i

):

We say that the answer of (P; V ) on input x and random inputs r

1

; : : : ; r

q(m)

is equal

to 1 if lengths of all the words p

i

are equal to q(m) andQ(x; r

1

� � � r

q(m)

; p

1

� � � p

q(m)

) =

1; otherwise answer is equal to 0. Denote the answer of (P; V ) on input x and ran-

dom inputs r

1

; : : : ; r

q(m)

by (P; V )(x)

r

1

���r

q(m)

. We say that a language L belongs

to IP, if there exists a Veri�er V suh that the following two assertions are true:

8x 2 L 9P Prob [(P; V )(x)

r

1

���r

q(jxj)

= 1℄ > 2=3

8x 62 L 8P Prob [(P; V )(x)

r

1

���r

q(jxj)

= 0℄ > 2=3;

where the probability is onsidered with respet to the uniform distribution in

r

1

� � � r

q(jxj)

.

If we allow Veri�er to query the orale A, then the resulting lass is denoted by

IP

A

.

The alternative de�nition of the lass IP with private oins (see, for example

[GMR 85, GMR 89℄ does not �t into our framework. However, as proven in [GS 86℄,

these two de�nitions are equivalent and the proof of the equivalene is relativizable.

A language L is in LOG(F

IP

) if there exists a polylogarithmi-time Veri�er for

whih the above assertion holds. Let us denote the lass LOG(F

IP

) by IPLOG.

9. On lasses of the form Co-K

A

and K

A

\Co-K

A

. Note that if the manifold K

A

is [strongly℄ regular, then the manifold Co-K

A

= fB

�

n L j L 2 K

A

g is [strongly℄

regular. If K

A

1

, K

A

2

are strongly regular, say K

A

i

= POLY

A

(F

i

), i = 1; 2, then

the manifold K

A

1

\ K

A

2

is strongly regular. Indeed, take the following separation

problem F :

F (�) =

8

>

<

>

:

1; if � = j�

1

j�

1

�

2

;where F

1

(�

1

) = F

2

(�

2

) = 1;

0; if � = j�

1

j�

1

�

2

;where F

1

(�

1

) = F

2

(�

2

) = 0;

�; if � has not suh form.

Obviously this separation problem F satis�es the following equations: LOG(F ) =

LOG(F

1

)\LOG(F

2

), LOGS(F ) = LOGS(F

1

)\LOGS(F

2

), EXP

A

(F ) = EXP

A

(F

1

)\

EXP

A

(F

2

).

All the known inlusions between the manifolds under onsideration are shown at

Figure 1 (a manifold K

A

1

is inluded in a manifold K

A

2

if K

A

1

� K

A

2

for all A). That

is, all the known relativizable inlusions between the lasses under onsideration

are shown at Figure 1. A line segment onnets a lass K

A

1

with a lass K

A

2

if the
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Figure 1. Relativizable inlusions between omplexity lasses.

lass K

A

1

is inluded in the lass K

A

2

, and the lass K

A

2

is positioned higher than

the lass K

A

1

.

7.1 Historial referenes. The nontrivial inlusions on the Figure 1 were proved

by the following authors.

7.1.1. The assertion MA

A

� �

A

2

\�

A

2

follows from G�as' result (published in [S

83℄) stating that BPP

A

� �

A

2

\ �

A

2

. Namely, in [S 83℄ a separation problem G(�)

is onstruted suh that G(�) is a solution of F

BPP

and

(7.1) G(�) = 1 () 8y 2 B

p(k�k)

9z 2 B

p(k�k)

Q(�; y; z)

where p is a polynomial and Q is a polylogarithmi prediate (that is, G 2 �

2

LOG).



RELATIVIZABLE AND NONRELATIVIZABLE THEOREMS 21

7.1.2. The assertion AM

A

� �

A

2

follows from the ited G�as' result. However,

for this assertion, it is important that in (7.1) the prediate Q(�; y; z) is monotone

in � (that is, if �

0

an by obtained from � be replaing some zeros by ones, then

Q(�; y; z) ) Q(�

0

; y; z)).

7.1.3. The assertion MA

A

� AM

A

was proved in [B 85℄.

7.1.4. Few

A

� �P

A

was proved in [CH 90℄.

7.1.5. The assertion MA

A

� PP

A

an be proved rather easily. Besides that,

it easily follows from the assertion PP

BPP

= PP proven in [KSTT 89℄. Indeed,

MA � NP

BPP

� PP

BPP

= PP.

7.1.6. The assertion Few

A

� �

A

2

\ �

A

2

follows from the assertion 8A Few

A

�

p

T

NP

A

, the latter assertion is easy and well known. For the sake of ompleteness, let

us prove it here.

As noted, it suÆes to prove that 8A Few

A

�

p;A

T

NP

A

. Fix A � B

�

. Assume

that L 2 Few

A

and that L is de�ned by the polynomials p; q and polynomial-time

prediates R

A

, Q

A

, that is,

L(x) = R

A

(x;

�

�

fy 2 B

p(jxj)

j Q

A

(x; y)g

�

�

);

�

�

fy 2 B

p(jxj)

j Q

A

(x; y)g

�

�

� q(jxj):

Let us prove that having an NP

A

-omplete language as orale, we an ompute in

polynomial time for any given x the ardinality of the set fy 2 B

p(jxj)

: Q

A

(x; y)g.

The proedure is as follows. For a given x, hek �rst if there exists a setM � B

p(jxj)

of ardinality exatly q(jxj) suh that 8y 2 M , Q

A

(x; y). This an be done by

querying the NP

A

-omplete language (sine jM j is polynomial bounded). If suh

a set M exists, then

�

�

fy 2 B

p(jxj)

j Q

A

(x; y)g

�

�

= q(jxj). If not, then hek if there

exists a set M � B

p(jxj)

of ardinality exatly q(jxj)� 1 suh that 8y 2M Q(x; y).

Repeat this proedure q(jxj) times.

7.1.7. The assertion Few

A

� PP

A

was proved in the paper [KSTT 89℄.

7.2 Is Figure 1 omplete? We laim that it is the ase, that is, all true relativiz-

able inlusions are shown at Figure 1. It follows from the twelve assertions listed

below. Namely, all the assertions 9A K

A

1

6� K

A

2

suh that

K

1

6� K

2

and 8K

0

1

(K

0

1

< K

1

) K

0

1

� K

2

); 8K

0

2

(K

2

< K

0

2

) K

1

� K

0

2

)

are listed, where K

1

< K

2

means that there exists a direted path from the lass

K

1

to the lass K

2

in the direted graph shown at Figure 1.

1. 9A UP

A

\ Co-UP

A

6� BPP

A

7. 9A AM

A

\ Co-AM

A

6� PP

A

2. 9A R

A

\ Co-R

A

6� �P

A

8. 9A AM

A

6� �

A

2

3. 9A Co-UP

A

6� �IP

A

9. 9A PP

A

6� PH

A

4. 9A FewP

A

\ Co-FewP

A

6� UP

A

10. 9A � P

A

6� PH

A

5. 9A Co-R

A

6� NP

A

11. 9A � P

A

6� PP

A

6. 9A IP

A

\ Co-IP

A

6� PH

A

12. 9A �

A

k

6� �

A

k

for k � 3

7.3 Proving the ompleteness of Figure 1. We give the proofs of all the

assertions in the above list whose proofs do not require a lot of spae and give

referenes for all other assertions.

7.3.1 Assertion 9A UP

A

\ Co-UP

A

6� BPP

A

.
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Theorem 5. 9A UP

A

\ Co-UP

A

6� BPP

A

Proof. Let us �x a onvenient terminology (being used in other proofs, too). All

the spei� separation problems G used in the sequel satisfy the following property:

for all F 2 LOGS(G) there exists a weakly polylogarithmi funtion f suh

that F (�) � G(f(�)) and kf(�)k depends only on k�k being equal to a

polynomial p(k�k).

Assume that F 2 LOGS(G) and let f be a weakly polylogarithmi funtion

suh that F (�) = G(f(�)) and kf(�)k = p(k�k) for all � 2 D(F ), where p is

a polynomial. Then all the words r being elements of the set B

p(k�k)

are alled

experts (for f and k�k), and the rth bit of f(�) is alled the opinion of r about �.

Let us �x a polylogarithmi mahine M that omputes the rth bit of the word f(�)

for a given � and r 2 B

p(k�k)

. We say that expert r queries �(u) (where u 2 B

k�k

),

if M queries the uth bit of � during the work on the input h�; ri. It is lear that

for all � and all r 2 B

p(k�k)

there exists at most poly(k�k) u 2 B

k�k

suh that

r queries �(u). Call the fration

�

�

fr 2 B

p(k�k)

j r queries �(u)g

�

�

bigm=2

p(k�k)

the

weight of u relative to �. Denote the weight of u relative to � by w

�

(u). If M and p

are not determined by the ontext we say \the weight of u relative to � for M , p".

It is easy to prove the following general fat:

P

u2B

k�k

w

�

(u) � q(k�k), where q is

the polynomial restriting the number of queries of every expert r 2 B

p(k�k)

.

Now let us start with the proof of Theorem 5. By Theorem 1, it suÆes to prove

that the separation problem

F (�) =

8

>

<

>

:

1; if � = �, k�k = kk, #

1

(�) = 1, #

1

() = 0,

0; if � = �, k�k = kk, #

1

(�) = 0, #

1

() = 1;

�; otherwise.

does not belong to BPPLOGS (evidently, POLY

A

(F ) = UP

A

\ Co-UP

A

).

Assume the ontrary: suppose there exist a polynomial p and a polylogarithmi

prediate P suh that 8n 8�;  2 F

n

,

#

1

(�) = 1; #

1

() = 0 ) M

2=3

r 2 B

p(n)

P (�; r) = 1

#

1

(�) = 0; #

1

() = 1 ) M

2=3

r 2 B

p(n)

P (�; r) = 0

Let us �x a value of n. Let �

0

2 F

n

, 

0

2 F

n

be the words ontaining only

zeros. Without loss of generality we may assume that the fration

�

�

fr 2 B

p(n)

j

P (�

0



0

; r) = 1g

�

�

Æ

2

p(n)

is greater than or equal to 1=2. We shall enumerate bits

in the �rst half � of the word � (where �;  2 F

n

) by the words of the form 0u,

u 2 B

n

, and bits of the seond half  by the words of the form 1u. (We follow this

rule in the sequel, too.)

Let the number of queries of experts to �

0



0

be restrited by k = poly(n).

Then

P

u2B

n

w

�

0



0

(1u) � k, therefore, there exists u

0

2 B

n

suh that w

�

0



0

(1u

0

) �

k

2

n

<

1

6

(if n is large enough). Denote by 

1

the word whose u

0

th bit is 1

and other bits are equal to 0. Replae the word �

0



0

by the word �

0



1

. After

this replaement at most 1=6 experts hange their opinions, hene, the fration

�

�

fr 2 B

p(n)

j P (�

0



1

; r) = 1g

�

�

Æ

2

p(n)

is greater than 1=3. As F (�

0



1

) = 0, we get

the ontradition.

7.3.2 Assertion 9A R

A

\ Co-R

A

6� �P

A

.
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Theorem 6. 9A R

A

\ Co-R

A

6� �P

A

Proof. Evidently, the manifold R

A

\ Co-R

A

an be generated by the following

separation problem F . If  2 F

1

, then F () = �. If  2 F

n+1

, denote by � the

�rst half of  and by � the seond half of . Then

F () =

8

>

<

>

:

0; if #

1

(�) = 0; #

1

(�) �

1

2

j�j;

1; if #

1

(�) �

1

2

j�j; #

1

(�) = 0;

�; otherwise.

By the Theorem 1, it suÆes to prove that F 6�

l

m

PARITY. Assume the ontrary:

suppose there exist a polynomial p and polylogarithmi prediate P suh that

8n 8 2 F

n+1

F () �

X

r2B

p(n)

P (; r) = 1:

The signs

P

and + in this proof denote the addition modulo 2.

Let us �x a polylogarithmi mahine M omputing the prediate P and a suÆ-

iently large n. Let the number of queries to the word  made by M on inputs of

the form h; ri, r 2 B

p(n)

, be bounded by k = poly(n). Let us prove that for any

�xed r 2 B

p(n)

the funtion P (; r) is a polynomial of degree � k (in the �eld of

residues modulo 2) of variables (v), v 2 B

n

. Indeed,

P (; r) =

X

k

Y

i=1

((v(b

1

� � � b

i�1

; r)) + b

i

+ 1);

where the sum ranges over all the tuples hb

1

; : : : ; b

k

i 2 B

k

suh that M out-

puts 1 if it reeives the answers b

1

; : : : ; b

k

to the queries made to , and where

v(b

1

� � � b

i

; r) 2 B

n+1

is the number of bit in  queried by M if it reeives the

answers b

1

; : : : ; b

i

for the previous queries to .

Therefore, the funtion

P

r2B

p(n)

P (; r) is a polynomial of degree at most k of

variables (v). Denote this polynomial by Q. Divide the variables (v), v 2 B

n+1

into two groups �(u), u 2 B

n

and �(u), u 2 B

n

, where �(u) = (0u) and �(u) =

(1u).

Consider two ases.

1st ase: the onstant term in Q is equal to zero. Set �(u) = 0 for all u 2 B

n

and set �(0

n

) = 0. Denote the resulting polynomial of degree at most k = poly(n)

by R. The polynomial R has 2

n

� 1 variables, has zero onstant term and is equal

to 1, if at least 2

n�1

variables are equal to 1. Let us derive a ontradition from

the existene of suh a polynomial. Consider the set A onsisting of all the 2

n�1

-

dimensional boolean vetors having exatly 2

n�1

ones. The ardinality of the set

A is equal to

�

2

n�1

2

n

�1

�

. Let us prove that this number is odd. We shall use a well

known riterion of whether

�

m

l

�

is odd.

Lemma 1.

�

m

l

�

is odd i� any bit of the binary representation of the number m is

greater than or equal to the orresponding bit of the number l.

Proof. Let i = m � l. Then

�

m

l

�

=

(i+l)!

i!l!

. For an integer k, denote by t(k) the

greatest integer j suh that 2

j

divides k. Obviously, t(j!) =

�

j

2

�

+

�

j

4

�

+ : : : .

Therefore

t

�

�

m

l

�

�

=

�

�

i+ l

2

�

�

�

i

2

�

�

�

l

2

�

�

+

�

�

i+ l

4

�

�

�

i

4

�

�

�

l

4

�

�

+ : : :
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Eah term in this sum is nonnegative and

�

i+l

2

s

�

�

�

i

2

s

�

�

�

l

2

s

�

= 0 i� i mod 2

s

+

l mod 2

s

< 2

s

. Thus

�

m

l

�

is odd if i mod 2

s

+ l mod 2

s

< 2

s

for all s. This means

that the sth bit of i or the s-bit of l is equal to zero for all s.

By this lemma, the number

�

2

n�1

2

n

�1

�

is odd. For any a 2 A, R(a) = 1, there-

fore,

P

a2A

R(a) = 1. Consider an arbitrary monomial T in R. Let us prove

P

a2A

T (a) = 0 to get a ontradition. Let T be equal to �(u

1

) � � ��(u

i

), where

i � k and u

1

, : : : , u

i

are di�erent. Sine R has no onstant term, we have i � 1. Let

us prove that the number a 2 A suh that a(u

j

) = 1 for all j � i, is even. Obviously,

this number is equal to

�

2

n�1

�i

2

n

�1�i

�

(we assume that i < 2

n�1

; sine i � k = poly(n),

this is true if n is large enough). Let s be the number of the lowest bit of the binary

representation of i being equal to 1. Then the sth bit of the number 2

n

� 1� i is

equal to 0, and the sth bit of the number 2

n�1

� i is equal to 1. Lemma 1 implies

that the number

�

2

n�1

�i

2

n

�1�i

�

is even.

We have to onsider also the seond ase (the onstant term in Q is equal to 1).

But this ase an be redued to the �rst ase by adding 1 to Q.

7.3.3 Assertion 8A Co-UP

A

6� IP

A

. This assertion was in fat proved in [FS 88℄

(tehnially speaking, a slightly weaker assertion 9A Co-NP

A

6� IP

A

was proved in

that paper). As the proof is very simple, we present it.

Theorem 7 (Fortnow, Sipser). 9A Co-UP

A

6� IP

A

.

Proof. By Theorem 1, it suÆes to prove that the separation problem

F

Co-UP

(�) =

8

>

<

>

:

1; if #

1

(�) = 0;

0; if #

1

(�) = 1;

�; otherwise.

is not in IPLOG.

Assume the ontrary: suppose there exists a polylogarithmi-time Veri�er V

suh that

#

1

(�) = 0 ) 9P Prob [(P; V )(�) = 1℄ > 2=3;

#

1

(�) = 1 ) 8P Prob [(P; V )(�) = 1℄ < 1=3;

where (P; V )(�) stands the answer output by V after the dialogue with P on input

�.

Take a large n and set �

0

= 0

2

n

. Then there exists a Prover P suh that

Prob [(P; V )(�

0

) = 1℄ > 2=3.

Consider the dialogue of P and V on input �

0

. This dialogue depends on

the outome of oin tossing made by Veri�er. Let us all di�erent outomes of

oin tossing experts and let us all the queries to �

0

made by the Veri�er dur-

ing the dialogue with the Prover P on input �

0

and outome r of oin tossing

the queries of the expert r to �. For a given u 2 B

n

all the fration

�

�

fr 2

B

p(n)

j makes the query `�

0

(u) =?'g

�

�

�

Æ

2

p(n)

the weight of u. Obviously, if n is

large enough, then there exists u having weight less than 1=3. Change the uth bit

in �

0

; denote the resulting word by �

1

. Sine Prob [(P; V )(�

0

) = 1℄ > 2=3, we ob-

tain Prob [(P; V )(�

1

) = 1℄ > 2=3� 1=3 = 1=3. On the other hand, this probability

should be less than 1=3. Contradition.
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7.3.4 Assertion 9A FewP

A

\Co-FewP

A

6� UP

A

. We will prove in the next setion

the following stronger statement: 9A FewP

A

\ Co-FewP

A

6�

p;A

T

UP

A

.

7.3.5 Assertion 5. 9A Co-R

A

6� NP

A

.

Theorem 8. 9A Co-R

A

6� NP

A

.

Proof. Assume the ontrary: suppose there exist a polynomial p and a polyloga-

rithmi time prediate P (�; r) suh that 8� 2 F,

#

1

(�) = 0 ) 9r 2 B

p(k�k)

P (�; r) = 1

#

1

(�) > 2=3j�j ) 8r 2 B

p(k�k)

P (�; r) = 0:

Let us �nd � suh that #

1

(�) > (2=3)j�j and 9r 2 B

p(

k�k

)

P (�; r) = 1. Take

�

0

= 0

2

n

, where n is large enough. Then there exists r

0

2 B

p(n)

suh that P (�

0

; r

0

).

Change the value of �

0

on all u suh that the polylogarithmi mahine omputing

P (�

0

; r

0

) does not query `�

0

(u) =?'. The resulting word � satis�es the desired

onditions.

7.3.6 Assertion 9A IP

A

\Co-IP

A

6� PH

A

. In the paper [AGH 86℄ it was proved

that 9A IP

A

6� PH

A

. Minor hanges in that proof allows us to prove that there

exists an orale A suh that IP

A

\ Co-IP

A

6� PH

A

.

7.3.7 Assertion 9A AM

A

\ Co-AM

A

6� PP

A

. This assertion is proved in the

paper [V 92℄.

7.3.8 Assertion 9A AM

A

6� �

A

2

. This assertion is proved in the paper [Sa 89℄.

7.3.9 Assertion 9A PP

A

6� PH

A

. This assertion follows from the fat that there

exists no k 2 N suh that the funtion MAJORITY(x

1

; : : : ; x

n

) an be represented

in the following form

2

polylog(n)

_

i

1

=1

2

polylog(n)

^

i

2

=1

: : :

2

polylog(n)

_

i

2k�1

=1

2

polylog(n)

^

i

2k

=1

f

i

1

:::i

2k

(x

1

; : : : ; x

n

);

where f

i

1

:::i

2k

(x

1

; : : : ; x

n

) is a variable or the negation of a variable ([FSS 84℄, [A

83℄, [Y 85℄, [H 86℄).

7.3.10 Assertion 9A � P

A

6� PH

A

. This assertion is proved in the papers [FSS

84℄, [A 83℄, [Y 85℄, [H 86℄.

7.3.11 Assertion 9A �P

A

6� PP

A

. This assertion is proved in [BG 81℄. In fat,

this theorem easily follows from the assertion PARITY 6�

l

m

MAJORITY proven in

[MP 88℄.

7.3.12 Assertion 8k � 3 9A �

A

k

6� �

A

k

. The �rst superpolynomial lower bounds

for the size �

k

-iruits neessary for the omputation of �

k

-funtions where ob-

tained by M. Sipser. We need the lower bound (2

f(n)

), where f grows faster than

any polylogarithm. Suh a bound is obtained in the paper [H 86℄.
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8. Turing reduibility between partiular omplexity lasses

In this setion we shall present all the known relativizable assertions of the form

K

1

�

p

T

K

2

. Obviously, if K

1

� K

2

, then K

1

�

p

T

K

2

, therefore all the inlusions

in Figure 1 yield the assertions on Turing reduibility. Let us list all other known

relativizable theorems of the form K

1

�

p

T

K

2

.

(1) The lass K is �

p

T

-reduible to the lass Co-K, and vie versa.

(2) �P

A

�

p

T

PP

A

.

(3) Few

A

�

p

T

NP

A

.

(4) PH

A

�

p

T

PP

A

.

The assertion (1) is evident. Both assertions (2) and (3) are simple. The asser-

tion (3) will be proved in x7, and the assertion (2) will be proved right now. The

assertion (4) was proved in the paper [T 89℄.

Theorem 9. �P

A

�

p

T

PP

A

for any orale A.

Proof. By Theorem 3 it suÆes to prove that the language PARITY(�) is �

l

T

-

reduible to the language

MAJORITY(�) =

�

1; if #

1

(�) �

1

2

j�j;

0; otherwise.

When we prove that a problem F is �

l

T

-reduible or is not �

l

T

-reduible to a

problem G it is onvenient to think that the reduing pair hM; fi is a mahine

that works on the input � just as the mahine M works on j�j and queries the

orale G instead of the orale G(f(�; �)) (when M queries the value of the orale

G(f(�; �)) on a word y, we think that the new mahine queries the value of G on

the word f(y; �)). Let us de�ne the pair hM; fi reduing the funtion PARITY to

the funtion MAJORITY in terms of the work of this new mahine.

Having MAJORITY as orale we an �nd #

1

(�) in time polylog(j�j) for any

given � as follows. Assume that j�j = 2

k

. Ask the orale MAJORITY whether

#

1

(�) �

1

2

j�j is true. Assume that the answer is \yes". Then hek whether

#

1

(�) �

3

4

j�j. For that purpose take a word � onsisting of

1

2

j�j zeros and query

the orale whether #

1

(��) �

1

2

j��j . It is easy to verify that this inequality is

equivalent to the inequality #

1

(�) �

3

4

j�j. Repeating this proess k times we �nd

#

1

(�). Output 1 if #

1

(�) is odd and 0 else.

All known relativizable assertions of the form K

1

�

p

T

K

2

are shown at the

Figure 2.

8.1 On ompleteness of Figure 2. It is unknown if the Figure 2 is omplete,

i.e., if all the relativizable theorems of the form K

1

�

p

T

K

2

are shown at Figure 2.

Let us go through the following 15 assertions whih should be proved to prove that

Figure 2 is omplete.

8.1.1. 9A R

A

\Co-R

A

6�

p;A

T

�P

A

. This assertion is true and follows from the fat

that the lass�P

A

is downward losed under �

p;A

T

-redutions and from the theorem

9A R

A

\Co-R

A

6� �P

A

. The loseness of the lass �P

A

under �

A

T

-redutions was

proved in [T 89℄, the seond theorem was proved in the previous setion.
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Figure 2. Turing reduibility between omplexity lasses.

8.1.2. UP

A

\ Co-UP

A

6�

p;A

T

BPP

A

. This assertion is true and follows from the

fat that the lass BPP

A

is downward losed under �

p;A

T

-redutions (for all A).

Indeed, in the previous setion it was proved that there exists an orale A suh

that UP

A

\ Co-UP

A

6� BPP

A

.

8.1.3. 9A FewP

A

\ Co-FewP

A

6�

p;A

T

UP

A

. This assertion is true and is proved

in this setion.

8.1.4. 9A R

A

6�

p;A

T

NP

A

\ Co-NP

A

. This assertion is true and follows from the

fat that the lass NP

A

\ Co-NP

A

is downward losed under �

p;A

T

-redutions and

from the fat that 9A R

A

6� Co-NP

A

(it was proved in the previous setion).

8.1.5. 9A UP

A

6�

p;A

T

IP

A

\ Co-IP

A

. This assertion is true and follows from the

fat that the lass IP

A

\ Co-IP

A

is downward losed under �

p;A

T

-redutions and

from the fat 9A UP

A

6� Co-IP

A

proven in the previous setion.

8.1.6. 9A �

A

2

\ �

A

2

6�

p;A

T

IP

A

. This assertion is true and is proved in x9.
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8.1.7. 9A BPP

A

6�

p;A

T

NP

A

. This assertion is true and is proved in x9.

8.1.8. 9A �P

A

6�

p;A

T

PH

A

. This assertion is true and follows from the fat that

the lass PH

A

is downward losed under �

p;A

T

-redutions (the losure of the lass

�

k

is inluded in the lass �

k+1

) and from the fat that 9A � P

A

6� PH

A

.

8.1.9. 9A AM

A

6�

p;A

T

�

A

2

\ �

A

2

. This assertion is true and follows from the fat

that the lass �

A

2

\ �

A

2

is downward losed under �

p;A

T

-redutions and from the

fat that 9A AM

A

6� �

A

2

.

8.1.10. 9A AM

A

\Co-AM

A

6�

p;A

T

MA

A

. This assertion was proved by the author

together with An. A. Muhnik. The proof is presented in this setion.

8.1.11. 9A � P

A

6�

p;A

T

IP

A

. This assertion is true and is proved in x9.

8.1.12. 9A IP

A

\ Co-IP

A

6�

p;A

T

PP

A

. Unknown.

8.1.13. 9A �

A

k

\�

A

k

6�

p;A

T

�

A

k�1

(k � 3). Unknown.

8.1.14. 9A �

A

k

6�

p;A

T

�

A

k

\ �

A

k

(k � 3). This assertion is true and follows from

the fat that the lass �

A

k

\�

A

k

is downward losed under �

p;A

T

-redutions and from

the fat that 9A �

A

k

6� �

A

k

.

8.1.15. 9A PH

A

6�

p;A

T

�

A

k

(k � 1). This assertion is true and follows from the

assertion 8.1.14.

8.2 Theorems. We prove now the assertions 8.1.3 and 8.1.10.

Theorem 10. (Joint work with An. A. Muhnik.) 9A AM

A

\Co-AM

A

6�

p;A

T

MA

A

.

Proof. Consider the following separation problem F . Let � = �, where �;  2 F

2n

,

n 2 N. Then

F (�) =

8

>

>

>

>

>

<

>

>

>

>

>

:

1; if M

2=3

x 2 B

n

9y 2 B

n

�(xy) = 1;

M

2=3

x 2 B

n

8y 2 B

n

(xy) = 0;

0; if M

2=3

x 2 B

n

8y 2 B

n

�(xy) = 0;

M

2=3

x 2 B

n

9y 2 B

n

(xy) = 1;

�; otherwise.

By Theorem 3 it suÆes to prove that F is not �

l

T

-reduible to the problem F

MA

.

Reall that F

MA

(�) 6= � only if the norm of � is even and that for k�k = 2k

F

MA

(�) =

8

>

<

>

:

1; if 9r 2 B

k

M

2=3

s 2 B

k

�(rs) = 1;

0; if 8r 2 B

k

M

2=3

s 2 B

k

�(rs) = 0;

�; otherwise.

The following property holds for the separation problem F

MA

as well as for all

other partiular problems G onsidered in the present paper. For any separation

problem H , if H �

l

T

G, then there exists a pair hM; fi reduing H to G suh that

the following two assertions hold:

(1) the number of queries made by M for input n does not depend on the

answers of the orale and is equal to a polynomial of n and
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(2) for all the queries `B(u) =?' made by M to its orale B during the work on

the input j�j, the length of the word f(u; �) is the same and depends only

on j�j. That is, if we onsider the pair hM; fi as a single mahine, then all

its queries to the orale G during the work on the input � have the same

length whih depends only on j�j.

In the sequel, we assume that all the pairs hM; fi being onsidered satisfy both

properties (1) and (2).

Assume that F �

l

T

F

MA

via the pair hM;hi. Let us �x a large n (at the end of

the proof we will see how large it should be). Let ' be a funtion from B

n

into

B

n

. Denote by �' the word of length 2

2n

enoding the graph of '. That is, for all

x; y 2 B

n

, �'(xy) is equal to 1 if y = '(x), and is equal to 0 otherwise. We will take

words of the form �'

�

 , where ' and  are partial funtions from the set B

n

into

the set B

n

, as arguments of F .

Let m = poly(n) be the number of queries made by M to the orale on input

2

2n+1

. We shall de�ne a binary sequene b

1

; : : : ; b

m

, partial funtions ';  : B

n

!

B

n

, and total funtions f

0

; g

0

: B

n

! B

n

suh that the sequene of orale answers

to the queries made by hM;hi to the orale F

MA

during the work on the input

�

f

0

�

 is

equal to b

1

; : : : ; b

m

and the sequene of orale answers to the queries made by (M;h)

to the orale F

MA

during the work on the input �'�g

0

is also equal to b

1

; : : : ; b

m

. The

ardinalities of domains of the funtions ' and  will be bounded by a polynomial of

n, therefore, for large enough n we shall get jDom(')j, jDom( )j <

1

3

2

n

. Obviously,

we shall get a ontradition beause hM;hi redues F to F

MA

and F (

�

f

0

�

 ) = 1,

F ( �'�g

0

) = 0.

Denote by 2k the norm of queries made by the pair hM;hi to the orale F

MA

(i.e., the norm of �'s suh that hM;hi queries `F

MA

(�) =?') during the work on

inputs of the norm 2n+ 1 (obviously, k � poly(n)). De�ne the following auxiliary

separation problem on words of the norm 2k:

G(�) =

�

1; if 9r 2 B

k

M

1=2

s 2 B

k

�(rs) = 1,

0; otherwise.

Obviously, G solves F

MA

.

Take arbitrary funtions f; g : B

n

! B

n

. Run the mahine M on the input

2

2n+1

with the orale G(h(�;

�

f�g)). Denote by e(f; g) the sequene of orale answers.

Sine the length of the word e(f; g) is equal to m, there exists a word e

0

of length

m suh that the fration

�

�

fhf;gije(f;g)=e

0

g

�

�

2

n(2

n

)

is at least

1

2

m

. Denote the set fhf; gi j

e(f; g) = e

0

g by K. Obviously, for all the pairs hf; gi 2 K the queries to the orale

G(h(�;

�

f�g)) made by M are the same. Denote those queries by v

1

; : : : ; v

m

(i.e., the

queries are `G(h(v

1

;

�

f�g)) =?', : : : , `G(h(v

m

;

�

f�g)) =?'). Let P (�; v; u) denote the

uth symbol of the word h(v; �), (� 2 F

2n+1

, u 2 B

2k

). Denote the bits of the word

e

0

by b

1

; : : : ; b

m

.

Denote by I the set fi j i � m; b

i

= 1g. We know that if i 2 I , then for all

hf; gi 2 K there exists r

i

2 B

k

suh that M

1=2

s 2 B

k

P (

�

f�g; v

i

; r

i

s) = 1. Again, we

an �nd a set K

0

� K suh that for any i 2 I and for all hf; gi 2 K

0

that r

i

is the

same and suh that

jK

0

j

jKj

�

1

2

km

. Evidently,

jK

0

j

2

n(2

n

)

�

1

2

km+m

. Denote the number

1

2

km+m

by ". We onsider the set K

0

as a planar set of the area not smaller than

". Obviously, there exists a vertial setion of the set K

0

of length not smaller than

" and there exists a horizontal setion of the set K

0

of length not smaller than ".
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That is, there exist funtions f

0

; g

0

and families of funtions F

0

and G

0

suh that

jF

0

j � "2

(n�2

n

)

, jG

0

j � "2

(n�2

n

)

, ff

0

g � G

0

� K

0

, F

0

� fg

0

g � K

0

.

De�ne now a partial funtion ' : B

n

! B

n

and a family F onsisting of

(total) funtions from B

n

into B

n

. Assume that x; y are in B

n

. Denote by

popularity

F

(x; y) the fration

�

�

ff 2 F j f(x) = yg

�

�

Æ

�

�

Fj. Set �rst ' = ;,

F = F

0

. Then, while there exists a pair hx; yi 2 (B

n

n Dom(')) � B

n

suh that

popularity

F

hx; yi � 2

�n+1

, pik suh a pair hx; yi, extend the partial funtion ' to

x by setting '(x) = y, and delete from F all the funtions f suh that f(x) 6= y.

We laim that the resulting ', F have the following properties:

(1) F � F

0

,

(2) all the funtions from the set F extend ',

(3) popularity

F

(x; y) < 2

�n+1

for all hx; yi 2 (B

n

nDom('))�B

n

,

(4) jDom(')j � � log

2

(jF

0

j=2

n(2

n

)

) � km+m = poly(n).

The properties (1){(3) are evident. Let us prove the assertion (4). Let F

i

, '

i

, x

i

,

and y

i

denote the value of the variables F , ', x, and y after ith iteration of the

while-loop. Then

jF

i+1

j=

�

�

ff : B

n

! B

n

j f extends '

i+1

g

�

�

� 2jF

i

j

Æ

�

�

ff : B

n

! B

n

j f extends '

i

g

�

�

beause

jF

i+1

j � 2

�n+1

jF

i

j

and

�

�

ff : B

n

! B

n

j f extends '

i+1

g

�

�

= 2

�n

�

�

ff : B

n

! B

n

j f extends '

i

g

�

�

:

Sine

jF

i+1

j=

�

�

ff : B

n

! B

n

j f extends '

i+1

g

�

�

� 1;

for all i, the number of iterations of the while-loop is at most � log

2

(jF

0

j=2

n(2

n

)

).

Apply the same proedure to the family G

0

and denote by G;  the resulting

funtions.

Let us prove that for all i � m,

F

MA

(h(v

i

; �'�g

0

)) = b

i

:

Take an arbitrary i � m. Consider two ases.

1st ase: b

i

= 1. Then we know that

(�) M

1=2

s 2 B

k

P (fg

0

; v

i

; r

i

s) = 1

for all the f 2 F . By de�nition of �

l

T

-reduibility, F

MA

(h(v

i

; �'�g

0

)) 6= � (if n is so

large that jDom(')j <

1

3

2

n

). Assume that F

MA

(h(v

i

; �'�g

0

)) = 0. Then

(��) M

2=3

s 2 B

k

P ( �'�g

0

; v

i

; r

i

s) = 0:

Let N be the mahine that for any given � 2 F, v 2 B

�

, u 2 B

k�k

in time

poly(jvj + k�k) omputes P (�; v; u). If � has the form ��

�

�, where �; � are partial

funtions from B

n

into B, then the queries made by N to � have one of the two
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following forms: `�(x) = y?' and `�(x) = y?', where x; y 2 B

n

. For x; y 2 B

n

denote by w

'g

0

(x; y) the fration

�

�

fs 2 B

n

j N on the input h �'�g

0

; v

i

; r

i

si queries `'(x) = y?'g

�

�

Æ

2

n

:

Obviously,

P

x;y2B

n

w

'g

0

(x; y) � poly(n). Then for any f 2 F the assertions (�)

and (��) imply that

X

x2B

n

nDom(')

w

'g

0

(x; f(x)) �

1

6

; therefore

1

jFj

X

f2F ; x2B

n

nDom(')

w

'g

0

(x; f(x)) �

1

6

:

Let us rewrite the left hand side of the last inequality as follows:

1

jFj

X

f2F ; x2B

n

nDom(')

w

'g

0

(x; f(x)) =

=

X

x2B

n

nDom('); y2B

k

w

'g

0

(x; y) � popularity

F

(x; y) �

� 2

�n+1

X

x2B

n

nDom('); y2B

k

w

'g

0

(x; y) � 2

�n+1

poly(n):

If n is large enough, we get the ontradition: 2

�n+1

poly(n) �

1

6

.

2nd ase: b

i

= 0. We know that

�

�

fs 2 B

k

j P (

�

f�g

0

; v

i

; rs) = 0g

�

�

Æ

2

k

is at most

1/2 for all r 2 B

k

and for all f 2 F . Assume that F

MA

(h(v

i

; �'�g

0

)) = 1, that is,

there exists r 2 B

k

suh that

M

2=3

s 2 B

k

P ( �'�g

0

; v

i

; rs) = 1:

Then just as it was done in the �rst ase we an get a ontradition. In the same

way we an prove that 8i � m,

F

MA

(h(v

i

;

�

f

0

�

 )) = b

i

:

Theorem 11. There is an orale A suh that FewP

A

\ Co-FewP

A

6�

p;A

T

UP

A

.

Proof. To demonstrate the method let us prove �rst that there exists an orale A

suh that FewP

A

\Co-FewP

A

6� UP

A

. De�ne the following separation problem F .

If k�k = kk, then

F (�) =

8

>

<

>

:

1; if 1 � #

1

(�) � 2; #

1

() = 0,

0; if 1 � #

1

() � 2; #

1

(�) = 0,

�; otherwise.

By the Theorem 1, it is suÆient to prove that F 62 UPLOGS. Assume the ontrary:

suppose there exist a polynomial p and a polylogarithmi-time prediate P suh

that

F (�) = 1 =) 9!r 2 B

p(k�k)

P (�; r) = 1;

F (�) = 0 =) 8r 2 B

p(k�k)

P (�; r) = 0:
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Take �

0

= 

0

= 0

2

n

, where n is large. Consider two ases.

1st ase: 9r 2 B

p(n)

P (�

0



0

; r) = 1.

Pik an expert r

0

suh that P (�

0



0

; r

0

) = 1. If n is large enough, then there

exists u 2 B

n

, suh that r

0

does not query `

0

(u) =?'. Set 

0

(u) = 1 and get a

ontradition.

2nd ase: 8r, P (�

0



0

; r) = 0.

Let us prove that if n is large enough, then there exists �

1

2 F

n

suh that

#

1

(�

1

) = 2 and #fr 2 B

p(n)

: P (�

1



0

; r) = 1g � 2. For a u 2 B

n

denote by �

u

0

the word whose uth bit is 1 and other bits are 0. For all u we have F (�

u

0



0

) = 1,

therefore, 8u 2 B

n

9!r 2 B

p(n)

P (�

u

0



0

; r) = 1. Denote that r by r

u

. Call the set

of all v 2 B

n

suh that the expert r

u

queries `�

u

0

(v) =?' the 1-base of u, and all

the set of all v 2 B

n

suh that the expert r

u

queries `�

0

(v) =?' the 0-base of u.

Denote the bases of u by B

1

(u) and B

0

(u) respetively.

Let us prove that if n is large enough, then there exist u

1

; u

2

2 B

n

suh that

u

1

62 B

0

(u

2

) [ B

1

(u

2

), and u

2

62 B

1

(u

1

). Indeed, the numbers of elements in all

bases are bounded by a polynomial of n, say q(n). Take random u

1

, u

2

(independent

and uniformly distributed). We have

Prob [u

1

2 B

0

(u

2

)℄ �

q(n)

2

n

;

Prob [u

1

2 B

1

(u

2

)℄ �

q(n)

2

n

;

Prob [u

2

2 B

1

(u

1

)℄ �

q(n)

2

n

:

Therefore, all three events do not happen with probability lose to 1.

Fix u

1

and u

2

suh that u

1

is not in B

0

(u

2

)[B

1

(u

2

) and u

2

is not in B

1

(u

1

). Let

us de�ne the word �

1

as follows: �

1

(u

1

) = �

1

(u

2

) = 1 and �

1

(v) = 0 for v 6= u

1

; u

2

.

Then �

1



0

2 D(F ) and P (�

1



0

; r

u

1

) = P (�

1



0

; r

u

2

) = 1 (sine u

2

62 B

1

(u

1

),

u

1

62 B

1

(u

2

)). We have r

u

1

6= r

u

2

beause P (�

u

1

0



0

; r

u

1

) = 1 and P (�

u

1

0



0

; r

u

2

) = 0

(sine u

1

62 B

0

(u

2

)). The ontradition shows that F is not in UPLOGS.

Let us prove now that F is not �

l

T

-reduible to F

UP

. Reall that

F

UP

(�) =

8

>

<

>

:

1; if #

1

(�) = 1,

0; if #

1

(�) = 0,

�; otherwise.

Assume that F is �

l

T

-reduible to F

UP

via the pair hM; fi. Then, by de�nition of

�

l

T

-reduibility we have

(�) 8� 2 D(F ) 8e 2 B

�

#

1

(f(e; �)) 2 f0; 1g

Fix n 2 N and set �

0

= 0

2

n+1

. Denote by D

1

the set f� 2 F

n+1

: #

1

(�) = 1g.

Evidently, D

1

� D(F ). We onstrut a set U � B

n+1

having at most poly(n)

elements suh that for all � in D

1

that are equal to zero on all the elements of U ,

the sequene of answers for queries to orale F

UP

made by hM; fi during the work

on input � is the same.

Denote by m the number of queries made by M to orale during the work on the

input 2

n+1

. De�ne the binary sequene b

1

; : : : ; b

m

and the sequene v

1

; : : : ; v

m

of
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binary words by indution as follows. Let v

i

be the word suh that the mahine M

asks `�(v

i

) =?' during the work on input 2

n+1

after getting the answers b

1

; : : : ; b

i�1

to the previous questions to orale and let

b

i

=

�

1; if #

1

(f(v

i

; �

0

)) � 1,

0; otherwise.

Let us onstrut for any i a set U

i

suh that F

UP

(f(v

i

; �)) = b

i

for all � 2 D

1

being

equal to zero on all the elements of U

i

. Then we set U =

S

m

i=1

U

i

.

Let us �x any i not exeeding m and onstrut U

i

. By de�nition of �

l

T

-

reduibility, there exists a mahine N that for any given h�; v

i

; ri (where jrj =

kf(v

i

; �)k) produes rth bit of the word f(v

i

; �) in time polylogarithmi of j�j.

Consider two ases.

1st ase: b

i

= 1, that is, #

1

(f(v

i

; �

0

)) � 1. Pik a word r suh that f(v

i

; �

0

)(r) =

1. Inlude in U

i

all the words u 2 B

n

suh that N asks `�

0

(u) =?' during the

omputation on input h�

0

; v

i

; ri. Then #

1

(f(v

i

; �)) � 1 for all � 2 F

n+1

being

equal to zero on all the elements of U

i

. By (�), this means that #

1

(f(v

i

; �)) = 1

for all � 2 D

1

being equal to zero on all the elements of U

i

.

2nd ase: #

1

(f(v

i

; �

0

)) = 0. Let �

0

= 

0

= 0

2

n

. We use all notation introdued

during the proof of the �rst part. Let us prove that the set V = fu 2 B

n

j

#

1

(f(v

i

; �

u

0



0

)) = 1g has no more than poly(n) elements. Namely, we laim that

jV j � 3q(n), where q(n) is a polynomial upper bound for the number of queries

of the form `�

0

(v) =?' made by N during the omputation on any input h�

0

; v

i

; ri

(where jrj = kf(v

i

; �

0

)k). Assume the ontrary: suppose that jV j > 3q(n). For

u 2 V denote by r

u

the word r suh that rth bit of word f(v

i

; �

u

0



0

) is 1. Denote

by B

0

(u) [B

1

(u)℄ the set of all v suh that N queries `�

0

(v) =?' [`�

u

0



0

(v) =?'℄

at some moment during the omputation on the input h�

0

; v

i

; r

u

i [h�

u

0



0

; v

i

; r

u

i℄.

Then jB

0

(u)j; jB

1

(u)j � q(n) for all u 2 V . Take random independent u

1

; u

2

being

uniformly distributed in V . The probability of event \u

1

62 B

0

(u

2

) [ B

1

(u

2

); u

2

62

B

1

(u

1

)" is at least 1� 3q(n)=jV j > 0. Just as it was done in the proof of the �rst

part, we an onstrut a word �

1

2 D(F ) suh that #

1

(f(v

i

; �

1



0

)) � 2, whih

ontradits to (�).

Likewise we an onstrut a set V

0

having poly(n) elements suh that #

1

(f(v

i

; �

0



u

0

)) =

1 for all u 2 B

n

n V

0

. Set U

i

= V [ V

0

.

If n is so large that 2

n

> jU j, there exist �

1

; �

2

2 D

1

suh that F (�

1

) = 1,

F (�

2

) = 0 and both �

1

and �

2

are equal to zero on all the elements of U . We have

hM; fi

F

UP

(�

1

) = hM; fi

F

UP

(�

2

). The obtained ontradition proves the theorem.

9. Complete languages in partiular omplexity lasses

It is known that the following lasses

(9.1) P

A

; NP

A

; Co-NP

A

; �

A

k

; �

A

k

; PSPACE

A

; �P

A

; PP

A

:

have �

p

m

-omplete languages. All the known theorems of the form \K

A

2

is �

p;A

m

-

hard (or �

p;A

T

-hard) for the lass K

A

1

for all A" an be obtained using the following

two rules:

(1) a lass K

A

2

is �

p

m

-hard for the lass K

A

1

if there exists a lass K

A

in the list

(9.1) suh that K

A

1

� K

A

� K

A

2

;

(2) a lass K

A

2

is �

p

T

-hard for the lass K

A

1

if there exists a lass K

A

in the list

(9.1) suh that K

A

1

�

p

T

K

A

� K

A

2

.
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9.1 Are the rules (1) and (2) omplete? It is unknown if all true assertions

of the form \K

A

2

is �

p;A

m

-hard [�

p;A

T

-hard℄ for the lass K

A

1

for all A", where K

A

1

and K

A

2

are lasses shown at Figure 1, an be obtained by the rules (1) and (2). We

have proved some assertions whih are neessary to prove in order to get positive

answer to the above question. Indeed, if K

A

2

is �

p;A

m

-hard for the lass K

A

1

, then

K

A

1

� K

A

2

(sine all the lasses under onsideration are downward losed under

�

p;A

m

-redutions). Therefore, if we have proved that 9A K

A

1

6� K

A

2

, then we have

also proved that 9A K

A

2

is not �

p;A

m

-hard for the lass K

A

1

. Analogously, if we

have proved that 9A K

A

1

6�

p;A

T

K

A

2

, then we have also proved that 9A K

A

2

is not

�

p;A

T

-hard for the lass K

A

1

. Let us go through remaining assertions whih should

be proved to obtain the positive answer to the above question. We divide the

list of those assertions into two parts. The �rst part ontains all the assertions of

the form \9A K

A

2

is not �

p;A

T

-hard for the lass K

A

1

" suh that it is unknown if

9A K

A

2

�

p;A

T

K

A

1

, the seond part ontains all the remaining assertions.

The �rst part of the list.

1. 9A PP

A

is not �

p;A

T

-hard for the lass IP

A

\Co-IP

A

. It is unknown whether

this is true. Sine PP

A

has �

p

m

-omplete language, this assertion is equivalent to

the assertion 9A IP

A

\ Co-IP

A

6�

p;A

T

PP

A

.

2. 9A �

A

k

is not �

p;A

T

-hard for the lass �

A

k+1

\ �

A

k+1

. It is unknown whether

this is true. Sine �

A

k

has a �

p

m

-omplete language, this assertion is equivalent to

the assertion 9A �

A

k+1

\ �

A

k+1

6�

p;A

T

�

A

k

.

The seond part of the list.

1. 9A �

A

k

\ �

A

k

is not �

p;A

T

-hard for the lass �

A

k

\ �

A

k

(k � 3). It is unknown

whether this is true or not.

2. 9A IP

A

is not�

p;A

T

-hard for the lass BPP

A

. This was proved by An. A. Muh-

nik together with the author. The proof is presented in this setion.

3. 9A IP

A

\ Co-IP

A

is not �

p;A

T

-hard for the lass R

A

\ Co-R

A

. This assertion

is true and was proved in [HJV 92℄.

4. 9A IP

A

\Co-IP

A

is not �

p;A

T

-hard for the lass UP

A

\Co-UP

A

. This assertion

is true. The proof is presented in this setion.

5. 9A �

A

2

\�

A

2

is not �

p;A

T

-hard for the lass BPP

A

. It is unknown whether this

is true or not.

6. 9A Few

A

is not �

p;A

T

-hard for the lass UP

A

\Co-UP

A

. This assertion is true.

In the paper [HJV 92℄, it was proved that there exists an orale A suh that the

lass FewP

A

is not �

p;A

T

-hard for the lass UP

A

\ Co-UP

A

. In the present paper

we prove that Few

A

is not �

p;A

T

-hard for the lass UP

A

\ Co-UP

A

for some A.

7. 9A �

A

2

\�

A

2

is not �

p;A

T

-hard for the lass Few

A

. It is unknown whether this

is true or not.

The listed assertions are \maximal" possible assertions of the form \9A K

A

2

is

not �

p;A

T

-hard for the lass K

A

1

" (this means that if we replae the lass K

A

1

by

some lower lass in the Figure 1 or replae the lass K

A

2

by some upper lass in

the Figure 1, then the assertion beomes false). Let us give other assertions of
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this form proven earlier. In the paper [S 82℄ it is proved that 9A R

A

has no �

p;A

m

-

omplete language, this theorem is strengthened in the paper [HJV 92℄ to prove

that 9A R

A

has no �

p;A

T

-omplete language; in the paper [S 82℄ it is proved that

9A NP

A

\Co-NP

A

has no �

p;A

m

-omplete language; in the paper [HH 88℄ it is proved

that 9A BPP

A

has no �

p;A

m

-omplete language, in the papers [A-S 86℄, [G 83℄, [HI

85℄ both results are strengthened to prove that 9A NP

A

\ Co-NP

A

has no �

p;A

T

-

omplete language and 9A BPP

A

has no �

p;A

T

-omplete language; in the paper

[HH 88℄ it is proved that 9A UP

A

has no �

p;A

m

-omplete language, this theorem is

strengthened in the paper [HJV 92℄ to prove that 9A UP

A

has no �

p;A

T

-omplete

language.

9.2 Theorems on non-ompleteness. Let us turn to the proofs. We use the

following lemma.

Lemma 2. If F and G are nondegenerate separation problems suh that

(9.1) F 62 n.u.PLOGS and

(9.2) n.u.LOGS(G) = n.u.PLOG,

then there exists an orale A suh that the lass POLY

A

(G) is not �

p;A

T

-hard for

the lass POLY

A

(F ).

Proof. By the Theorem 4, it suÆes to prove that the separation problem F is �

l

T

-

reduible to no language in the lass LOG(G). Assume that there exists a language

H 2 LOGS(G) suh that F �

l

T

H . Then H is in n.u.LOGS(G) = n.u.PLOG �

n.u.PLOGS. Therefore F is in n.u.PLOGS beause the lass n.u.PLOGS is down-

ward losed under �

l

T

-redutions.

Assertions 3 and 4 an be easily derived from the Lemma 2, Theorem 3, and the

following theorem.

Theorem 12. n.u.IPLOG \ Co-n.u.IPLOG = n.u.PLOG.

We omit the proof of Theorem 12 beause its proof is an easy generalization of

Nisan's result (see [N 89℄) n.u.BPPLOG = n.u.PLOG. Independently, Theorem 12

was proved by the author it the �rst version of the present paper.

The assertion 6 an be proved in similar way. Formally, we annot use Lemma 2

beause we do not know whether the manifold Few

A

is regular.

Theorem 13. If F is a nondegenerate separation problem and F is not in n.u.PLOGS,

then there exists an orale A suh that the lass Few

A

is not �

p;A

T

-hard for the lass

POLY

A

(F ).

Proof. We an apply the diagonal onstrution used in the proof of Theorem 3. It

is lear that it suÆes to prove the following lemma.

Lemma 3. Let P (�; r) be a prediate being de�ned on the set F � B

�

and om-

putable in poly(k�k; jrj) queries to � and let p(n), q(n) be polynomials suh that

8� 2 F

�

�

fr 2 B

p(k�k)

: P (�; r) = 1g

�

�

� q(k�k). Then the funtion

f(�) =

�

�

fr 2 B

p(k�k)

: P (�; r) = 1g

�

�

is non-uniformly polylogarithmi.

Proof. Let us �x a polynomial s(k�k; jrj) and a mahine M suh that M omputes

P (�; r) in time s(k�k; jrj) for any given h�; ri. Let n be an integer. Denote p(n) by
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m and s(n;m) by k. Let us all words in the set B

m

experts. We say that an expert

r aepts � 2 F

n

if P (�; r) = 1. For any � 2 F

n

let f(�) = fr 2 B

m

j r aepts �g.

It is suÆient to prove that the funtion f(�) an an be omputed in q(n)k

2

queries.

Call any partial funtion ' : B

n

! B a segment. Two segments are onsistent

if they have ommon extension. Any expert for a given � : B

n

! B queries the

value of � on k arguments, say u

1

; : : : ; u

k

. Call the segment fhu

i

; �(u

i

)i j i � kg

the information of r about �. Call the information of r about any � aepted by r

a erti�ate of expert r. A erti�ate is a erti�ate of some expert.

We �nd all experts aepting � for any given � 2 F

n

as follows. For any subset U

of B

n

denote by �

U

(�) the set of all erti�ates having the same value on elements

of U as � has. Our goal is to onstrut a set U suh that �

U

(�) is the set of

all erti�ates onsistent with �. Let us start with U = ;. Repeat k times the

following loop.

Take any maximal (with respet to inlusion) subset 	 = f'

1

; : : : ; '

j

g of �

U

(�)

suh that the sets Dom('

1

) n U; : : : ;Dom('

j

) n U are pairwise disjoint. Then

j � q(n) beause there exists � 2 F

n

being onsistent with all erti�ates in

	 and '

1

; : : : ; '

j

are erti�ates of di�erent experts (beause erti�ates of any

expert are pairwise inonsistent). Ask the value of � on all the elements of the

set V = (Dom('

1

) [ � � � [ Dom('

j

)) n U . Sine 	 is maximal, the domain of any

erti�ate ' 2 �

U

(�)n	 intersets with V . Set U = U[V . Note that jDom(')nU j

is dereased for any erti�ate ' 2 �

U

(�) n	 and Dom(') nU beomes empty for

any erti�ate ' 2 	 after this setting. The loop is ompleted.

The value maxfjDom(') nU j j ' 2 �

U

(�)g dereases or remains zero after eah

iteration of the above loop. Therefore, Dom(') � U for any ' 2 �

U

(�) after k

iterations of the loop. This means that �

U

(�) is the set of all erti�ates onsistent

with �. Obviously, an expert aepts � i� some its erti�ate is onsistent with �.

Hene we know all the experts aepting �. It remains to note that during eah

iteration of the loop we make at most q(n) � k queries to �.

The assertion 2 annot be derived from the Lemma 2 sine n.u.IPLOG � n.u.NPLOG �

n.u.PLOG.

Theorem 14. (Joint work with An. A. Muhnik). There is an orale A suh that

IP

A

is not �

p;A

T

-hard for the lass BPP

A

.

We prove this theorem together with the yet unproved theorems from the pre-

vious setion.

Theorem 15. 9A BPP

A

6�

p;A

T

NP

A

.

Theorem 16. 9A � P

A

6�

p;A

T

IP

A

.

Theorem 17. 9A �

A

2

\ �

A

2

6�

p;A

T

IP

A

.

Proofs of Theorems 14{17. In fat, Theorem 15 follows from Theorem 14 beause

the lass NP

A

has a �

p

m

-omplete language and NP

A

� IP

A

. Nevertheless we prove

�rst Theorem 15. By Theorem 4 it suÆes to prove that F

BPP

6�

l

T

F

NP

.

Assume that F

BPP

�

l

T

F

NP

. Let hM; fi be a reduing pair. Fix a large n.

Denote by m the number of queries made by M to orale during the work on

input 2

n

. Obviously, m � poly(n). Assume that � is in F

n

. Run the mahine

M supplied with the orale F

NP

(f(�; �)) on the input 2

n

. Denote by e(�) the
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sequene of orale answers reeived by M in that omputation (e(�) 2 B

m

). Take

an � 2 F

n

having lexiographial greatest e(�), denote that � by �

0

. Denote

e(�

0

) by e

0

= b

0

1

� � � b

0

m

, and denote the queries of M to the orale F

NP

(f(�; �

0

))

by v

1

; : : : ; v

m

(more preisely, the queries are `F

NP

(f(v

i

; �

0

)) =?'). Let I be the

set of all the indies i � k suh that F

NP

(f(v

i

; �

0

)) = 1, that is, #

1

f(v

i

; �

0

) > 0.

For eah i 2 I �x a word t

i

suh that f(v

i

; �

0

)(t

i

) = 1. Let q(n) be a polynomial

bounding the time of weak omputation of the funtion f(v

i

; �) for � 2 F

n

, i � m.

Obviously, for any i 2 I there exists a set U

i

� B

n

having at most q(n) elements

suh that f(v

i

; �)(t

i

) = 1 for all � having the same values on all the elements of

U

i

as �

0

has. Set U =

S

i2I

U

i

. Evidently, jU j � mq(n) = poly(n). We have

F

NP

(f(v

i

; �)) = 1 for all i � m suh that b

0

i

= 1 and for all � 2 F

n

having the

same values on all the words in U as �

0

has.

We laim that, moreover, e(�) = e(�

0

) for all � 2 F

n

having the same values

on all the words in U as �

0

has. Assume the ontrary. Let � be a ounterexample.

Let b

1

� � � b

m

be the bits of e(�). Let i be the least number suh that b

i

6= b

0

i

.

Then, sine the word e

0

is the lexiographial greatest word among the word of

the form e(�), � 2 F

n

, we have b

i

= 0, b

0

i

= 1. As � and �

0

have the same

values on all the words in U , we have F

NP

(f(v

i

; �)) = 1. On the other hand

b

0

1

� � � b

0

i�1

= b

1

� � � b

i�1

, therefore the ith query to the orale made by M during

the omputation on the input 2

n

with the orale F

NP

(f(�; �)) is `F

NP

(f(v

i

; �)) =?'.

Consequently, F

NP

(f(v

i

; �)) = b

i

. The ontradition proves the laim.

The equality e(�) = e(�

0

) implies that hM; fi

F

NP

(�) = hM; fi

F

NP

(�

0

). Without

loss of generality we may assume that hM; fi

F

NP

(�

0

) = 0. Take n so large that

jU j <

1

3

2

n

. Let � be equal to �

0

on all the elements of U and to 1 on all the elements

of B

n

n U . We have F

BPP

(�) 6� hM; fi

F

NP

(�

0

) = hM; fi

F

NP

(�). Theorem 15 is

proved.

Let us prove Theorem 16. Sine PARITY is a language, by Theorem 3, it suÆes

to prove that PARITY 6�

l

T

IPLOG. Assume that PARITY is �

l

T

-reduible to a

language F in the lass IPLOG via a pair hM; fi. De�ne �

0

, m, q(n), v

1

; : : : ; v

m

,

e

0

just as it was done in the previous proof. Sine F is in IPLOG, there exists a

polylogarithmi Veri�er V for F . For eah i � m suh that b

0

i

= 1, �x a Prover P

i

suh that Prob [(P

i

; V )(f(v

i

; �

0

)) = 1℄ > 2=3. Let N be a mahine that omputes

the tth bit of the word f(v; �) within time poly(k�k + jvj) for any given h�; v; ti,

where jtj = kf(v; �)k. Let r = poly(n) is an upper bound for the number of queries

of the form `�

0

(x) =?', where x is in B

n

, made by N in omputations on inputs

of the form h�

0

; v

i

; ti, where jtj = kf(v

i

; �

0

)k. Denote f(v

i

; �

0

) by �

i

0

. Let s =

poly(n) be an upper bound for the number of queries of the form `�

i

0

(t) =?', where

jtj = k�

i

0

k, made by V in dialogue with P

i

on input �

i

0

. Let x be in B

n

. Denote

by w

i

�

0

(x) the probability of the event \there exists t 2 B

k�

i

0

k

suh that V queries

`�

i

0

(t) =?' in the dialogue with P

i

on input �

0

and N queries `�

0

(x) =?' during

the omputation on the input h�

0

; v

i

; ti". Then

P

i:b

0

i

=1

P

x2B

n

w

i

�

0

(x) � msr,

therefore, there exists x

0

2 B

n

suh that

P

i:b

0

i

=1

w

i

�

0

(x

0

) � msr=2

n

< 1=3 (if n is

suÆiently large). Change the x

0

th bit of �

0

and denote the resulting word by �.

Let us prove that e(�) = e(�

0

), and therefore hM; fi

F

(�) = hM; fi

F

(�

0

). Assume

that e(�) 6= e(�

0

). Denote by b

1

� � � b

m

the bits of e(�). Take the least i suh that

b

i

6= b

0

i

. Then b

i

= 0 and b

0

i

= 1. Therefore, F (f(v

i

; �)) = 0, onsequently,

Prob [(P

i

; V )(f(v

i

; �)) = 1℄ < 1=3:
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On the other hand,

Prob [(P

i

; V )(f(v

i

; �

0

)) = 1℄ > 2=3:

Hene, w

i

�

0

(x

0

) > 1=3 beause � and �

0

have di�erent value only on x

0

. The

obtained ontradition shows that e(�) = e(�

0

) and hM; fi

F

(�) = hM; fi

F

(�

0

).

Sine PARITY(�) 6= PARITY(�

0

), the theorem is proved.

Let us prove Theorem 14. We have to prove that the separation problem F

BPP

is

�

l

T

-reduible to no language F in the lass IPLOG. Assume the ontrary: F

BPP

�

l

T

F 2 IPLOG. We use all notations from the previous proof. Without loss of

generality we may assume that hM; fi

F

(�

0

) = 1. Let �

1

be a word in the set

f� 2 F

n

j e(�) = e(�

0

)g having the least number of ones. Without loss of generality

we may assume that �

1

= �

0

. If #

1

(�

0

) <

1

3

2

n

, then the ontradition is already

derived. If #

1

(�

0

) �

1

3

2

n

, then there exists x

0

2 B

n

suh that

P

i:b

0

i

=1

w

i

�

0

(x

0

) �

msr

(1=3)2

n

< 1=3 and �

0

(x

0

) = 1. De�ne the word � as follows: �(x

0

) = 0, �(x) =

�

0

(x) for x 6= x

0

. Then #

1

(�) < #

1

(�

0

). Just as it was done in the previous proof

we an prove that e(�) = e(�

0

). This ontradits with the hoie of �

0

.

Let us prove Theorem 17. Let � be a partial funtion from B

n

into B

n

. Denote

by �� the word enoding the graph of � (�� 2 B

2

2n

). Consider the separation problem

F () =

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

1; if 9n 2 N :  = ��

�

�, where � and � are partial

funtions from B

n

into B

n

suh that � is total and �

is de�ned on all the arguments but one,

0; if 9n 2 N :  = ��

�

�, where � and � are partial

funtions from B

n

into B

n

suh that � is total and �

is de�ned on all the arguments but one,

�; otherwise.

Denote by E

n

the set f 2 F

2n+1

j F () 6= �g.

By Theorem 4, it suÆes to prove that there exists no G 2 IPLOGS suh that

F �

l

T

G. Assume that suh a problem G exists. Let hM; fi be pair reduing F to G.

Fix a large n. We use all the notations from the previous proofs. Take a word  2 E

n

having the lexiographial greatest e(). Let �

0

; �

0

be partial funtions suh that

 = ��

0

�

�

0

. Without loss of generality we may assume that F (��

0

�

�

0

) = 1, that is, �

0

is

total. Let �

0

be unde�ned on the word x

1

. Fix a Veri�er for the solving the problem

G. We enumerate bits of  in suh a way that for x; y 2 B

n

, (0xy) = ��

0

(xy),

(1xy) =

�

�

0

(xy). For an i suh that b

0

i

= 1, de�ne the weight w

i

�

0

�

0

(u) of word

u 2 B

2n+1

as follows: w

i

�

0

�

0

(u) is equal to the probability of the event \there exists

t 2 B

kf(v

i

;�

0

)k

suh that V queries `f(v

i

; �

0

)(t) =?' in the dialogue with P

i

on

input f(v

i

; �

0

) and N queries `�

0

(u) =?' during the work on input h�

0

; v

i

; ti". If

n is large enough, we an �nd x

0

2 B

n

suh that

P

i:b

0

i

=1

w

i

�

0

�

0

(0x

0

�

0

(x

0

)) < 1=6

and we an �nd y

1

2 B

n

suh that

P

i:b

0

i

=1

w

i

�

0

�

0

(1x

1

y

1

) < 1=6.

De�ne the partial funtions �, � bas follows:

�(x) =

�

�

0

(x); if x 6= x

0

,

unde�ned; if x = x

0

,

�(x) =

�

�

0

(x); if x 6= x

1

,

y

1

; if x = x

1

.
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Then e(��

�

�) = e(��

0

�

�

0

) and F (��

�

�) = 0. The obtained ontradition proves the

theorem.
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