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Abstract We introduce the notion of a strong sufficient statistic for a given data
string. We show that strong sufficient statistics have better properties than just suffi-
cient statistics. We prove that there are “strange” data strings, whose minimal strong
sufficient statistic have much larger complexity than the minimal sufficient statistic.
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1 Introduction

The goal of statistics is to provide adequate statistical hypotheses (models) for
observed data. But what is an “adequate” model? To answer this question, one can
use the notions of algorithmic information theory.

Assume that the given data x is a binary string. As models, consider probability
distributions P on finite sets of strings with rational values. The quality of such a
model, as an explanation for x, is measured by three parameters:

• Kolmogorov complexity C(P ) of P ,1

• the minus log-likelihood − log2 P(x) of P , and

1Kolmogorov complexity of P is defined as follows. We fix any computable bijection P �→ [P ] from the
family of probability distributions to the set of binary strings, called encoding. Then we define C(P ) as
the complexity C([P ]) of the code [P ] of P .

Some results from this paper appeared in a preliminary form in Proceedings of CiE [8] and [9].
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• the randomness deficiency of x with respect to P , defined as − log2 P(x) −
C(x|P).2

The less the parameters are the better the model is. Without loss of generality (see,
e.g. [7, Appendix II, pp. 3282]) we can restrict the class of models for x to uniform
probability distributions over finite sets A � x,3 in which case the parameters become

• Kolmogorov complexity C(A) of A,4

• log |A|, the log-cardinality of A, and
• log |A| − C(x|A), the randomness deficiency of x in A.

In this paper we focus on the first two parameters. For a given string x an
i, j -description for x is any set A � x of complexity at most i and log-cardinality at
most j .

Sufficient Statistics A finite set A ⊂ {0, 1}∗ is called a sufficient statistic for x if
x ∈ A and the sum of the Kolmogorov complexity of A and log-cardinality of A is
close to the Kolmogorov complexity of x:

C(A) + log |A| ≈ C(x).

More specifically, we call A an ε-sufficient statistic for x if the left hand side exceeds
the right hand side by at most ε. We do not require the inverse inequality, as it holds
with precision O(log C(x)) anyway.

For every x the singleton {x} is an O(1)-sufficient statistic for x. The complexity
of this statistic is about C(x). If x is a random string of length n (that is, C(x) ≈ n)
then there is a O(log n)-sufficient statistic for x of much lower complexity: the set
of all strings of length n, whose complexity is about log n, is a O(log n)-sufficient
statistic for x. We will think further of ε as having the order O(log n) and call such
values negligible.

Sufficient Statistics and Useful Information Sufficient statistics for x are thought as
models squeezing a noise from x. The explanation is the following. Let A be a suffi-
cient statistic for x. One can show that in this case both the randomness deficiency of
x in A and C(A|x) are negligible. Let z be the binary notation of the ordinal number
of x in A (with respect to the lexicographical order on A). As C(A|x) is negligible,
both conditional complexities C(x|A, z) and C(A, z|x) are also negligible.5 Speak-
ing informally, the two part code (A, z) of x has the same information as x itself, and
its second part z is a string of length log |A| that is random conditional to its first part

2C(x|P) and C(P |x) are defined as C(x|[P ]) and C([P ]|x), respectively, where P �→ [P ] is a fixed
computable encoding of distributions by strings (see the previous footnote).
3Indeed, let P be a probability distribution on a finite set of strings with rational values. Let 2−m stand for
P(x) rounded down to an integer power of 2. If m > n = |x|, then let U be the uniform distribution on
all strings of length n. Otherwise let U be the uniform distribution on the set A = {x | P(x) � 2−m}. It is
easy to verify that all the three parameters of U are at most O(logn) larger than those of P .
4Kolmogorov complexity of finite subsets of {0, 1}∗ is defined via an encoding, similarly to complexity
of distributions.
5C(x|A, z) is defined as C(x|[[A], z]), where (x, y) �→ [x, y] is a computable bijection between pairs of
strings and strings; the notation C(A, z|x) is understood in a similar way.
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A.6 This encourages us to qualify z as an accidental information (noise) in the pair
(A, z), and hence in x. In other words, all useful information from x is captured by
the set A.

Minimal Sufficient Statistics The most valuable sufficient statistic is the one that
squeezes as much noise as possible from the data, that is, that has smallest com-
plexity and largest cardinality. Such statistics are informally called minimal sufficient
statistics, MSS, for x.

Thus any MSS for x extracts all useful information from x. What is that infor-
mation? The answer is a bit confusing. Let �k denote the number of strings of
complexity at most k.7 Let A be an MSS for a string x and let m = C(A). As shown
in [7, Theorem VIII.4(iii), p. 3281], both conditional complexities C(A|�m) and
C(�m|A) are negligible. That is, all MSS of the same complexity (even if they are
MSS for different strings) are equivalent. Thus any MSS for x does not provide any
specific information about x: it provides the information about the number of strings
of bounded complexity.

Total Conditional Complexity A possible way to resolve this paradox is the follow-
ing. It seems that our definition of “having the same information” is too broad, we
implicitly assumed that u and v have the same information, if both C(u|v) and C(v|u)

are negligible. Under this assumption every string x has the same information as its
shortest program x∗. In the context of separating the information into a useful one
and an accidental one, such an assumption is certainly misleading. Indeed, the entire
information in x∗ (which is a random string) is noise, while x may have useful infor-
mation. In algorithmic statistics, it is more helpful to think that u and v have the same
information only if total conditional complexities CT(u|v) and CT(v|u) are negligi-
ble. The total conditional complexity CT(u|v) is defined as the minimal length of a
total program p for u conditional to v: CT(u|v) = min{|p| : p(v) = u and p(v′)
halts for all v′}. The total conditional complexity can be much greater than the plain
one. This fact was first observed in [6]. In this paper we show that there is a string
x such that CT(x|x∗) is large for all short programs x∗ for x; on the other hand,
for all strings x there is a short program x∗ for x such that CT(x∗|x) is negligible
(Theorem 17 in the Appendix).

If both CT(u|v) and CT(v|u) are negligible, then u, v have similar statistical prop-
erties. We will call such strings equivalent in the sequel. In contrast to this, if both
plain conditional complexities C(u|v) are C(v|u) are negligible then we will call u, v

weakly equivalent

Strong Sufficient Statistics: the Definition Adopting this viewpoint we cannot con-
sider any two MSS of the same complexity as equivalent objects any more. It might
happen that a certain string has several non-equivalent MSS (in this paper we provide

6Indeed, C(z|A) is up to an additive constant equal to C(x|A), which is close to log |A|.
7The information in �k is a part of the information in �l for l � k (i.e., C(�k |�l) = O(log l)). In fact,
�k contains the same information (up to O(log k) conditional complexity in both directions) as first k bits
of Chaitin’s �-number (a lower semicomputable random real), so we use the same letter � to denote it.
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such an example). For such strings we would like to have a tool to distinguish
between “true” and “false” models.

In this paper we propose the following way to do that. We call a set A � x a
strong statistic (or model) for x if CT(A|x) is negligible. We call a set A � x a
good model (or statistic) for x if it is both strong and sufficient. As we mentioned,
the sufficiency requirement implies only that plain (not total) conditional complexity
C(A|x) is negligible, thus a sufficient statistic might be not strong (we provide such
an example later). Specifically, we call A an ε-strong model for x if CT(A|x) � ε

and we call A an ε-good model for x if A is both ε-strong and ε-sufficient for x. We
call (quite informally) a set A a strong MSS for x if A is an MSS for x and A is a
strong model for x. It might happen that no MSS for x is strong, in which case x has
no strong MSS and all good model for x have larger complexity than that of MSS.

A set A is a strong model for x iff both total complexities CT(x|A, z), CT(A, z|x)

are negligible, where z is the ordinal number of x in A. Indeed, given the pair (A, z)

we can find x by means of a short total program (even if A is not strong). Conversely,
if A is a strong statistic for x, then from x we can compute A by means of a short
total program and then compute the ordinal number of x in A.

Example 1 Here is an example of a good model. Let y be any string and let x = yz,
where z is a string of length m that is random conditional to y (that is, C(z|y) ≈ m).
Intuitively, x is obtained from y by adding m bits of noise and y captures all useful
information from x. Consider the set A = {yz′ : |z′| = m} as a model for x. This
model is good and is equivalent to y, which supports the viewpoint that good models
are indeed “true” models of the data.

Again the most valuable strong sufficient statistics are those having minimal com-
plexity, minimal good statistics, MGS. We will see that the complexity of MGS may
be much larger than that of MSS.

Remark 1 Without loss of generality we can require in the definition of ε-strong
model for x that there is a total program of length at most ε that maps every x ′ ∈ A

to [A]. Indeed, assume that A is an ε-strong model for x and p a short total program
with p(x) = [A]. Then the parameters of the model A′ = {x ′ ∈ A | p(x ′) = [A]}
are not much worse than those of A: its complexity is only about |p| bits more and its
log-cardinality is the same or less. And the following total program of length about
|p| transforms any x ′ ∈ A′ to [A′]: given x ′ apply p to x ′ to find A and return (the
code of) the set consisting of all x ′′ ∈ A with p(x ′′) = [A].

Strong Statistics: Existence Our first main result, Theorem 1, provides an example of
a string x when the set of all models and strong models differ in a maximal possible
way. To state it let the optimality deficiency of a model A for x be defined as C(A) +
log |A|− C(x). Consider the upward closed set Px , called the profile of x, consisting
of all pairs (i, j) ∈ N

2 such that x has a model of complexity at most i and optimality
deficiency at most j :

Px = {(i, j) | (∃A � x) C(A) � i, C(A) + log |A| � C(x) + j}.
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Fig. 1 The set Px is to the right of the dashed line. The set P ε
x is to the right of the bold line

Similarly, let P ε
x denote the set of all pairs (i, j) ∈ N

2 such that x has an ε-strong
model of complexity at most i and optimality deficiency at most j . Obviously the set
Px includes the set P ε

x (see Fig. 1). A set A is an ε-sufficient statistic for x iff the
optimality deficiency of A is at most ε.

The larger the profile of x is the more stochastic the string x is. Kolmogorov called
stochastic those strings whose profile is close to the set of all pairs of naturals.8

We provide an example of a string x such that P ε
x is much smaller than Px for a

large enough ε (see Fig. 2).

Theorem 1 (on existence of strange strings, informal) If ε � k � n then there is a
string x of length n and complexity k whose sets Px and P ε

x are close to those shown
on Fig. 2.

For instance, let ε = n/3, k = 2n/3 and x a string existing by Theorem 1. Basi-
cally, the only good model for x is the singleton set {x}. The complexity of any MSS
for x is n/3, which is much smaller than the complexity of any MGS (2n/3). Hence
x has no strong MSS. Informally, we will call such strings strange.

On the other extreme there are strings x for which the sets Px and P ε
x are close

to each other (say, each of them is in O(log C(x))-neighborhood of the other) for
some negligible ε. In contrast to strange strings, we will call such strings x normal.
Every normal string has a strong MSS (the complexities of MGS and MSS are close).
One can wonder if normal strings can have bad MSS at all. Our second result is an
example of such a string.

Theorem 2 (on existence of a normal string having a bad MSS, informal) For every
k there is a string x of length 3k and complexity 2k such that both sets Px and P ε

x

are close to the set shown on Fig. 3 (for ε = O(log k)). Moreover, the string x has a
minimal sufficient statistic B such that CT(B|x) is close to k.

8More specifically, he called a string x α, β-stochastic if there is a model for x of complexity at most α and
log-cardinality at most C(x) + β . With logarithmic accuracy this means that the pair (α, α + β) is in Px .
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Fig. 2 The sets Px and P ε
x for the strange string from Theorem 1. The set Px is to the right of the dashed

line. The set P ε
x is to the right of the bold line

Strong Sufficient Statistics: Nice Properties We are able to show that good strong
sufficient statistics have two nice properties. The first property is the following: any
strong MSS for x can be obtained by a short total program from any other sufficient
statistic for x.

Theorem 3 (on total complexity of any strong MSS given any sufficient statistic,
informal) For any strong MSS A for x and for any sufficient statistic B for x the total
complexity CT(A|B) is negligible.

For the class of all models (and not only strong ones) this property holds for plain
conditional complexity C in place of total complexity CT, see Corollary 12 below.

Theorem 3 implies that for any normal string x there is a unique MGS for x.
Indeed, if A, B are minimal good statistics for a normal string x then A, B are also
minimal sufficient statistics for x. Being both strong, A, B satisfy the assumptions
of Theorem 3 and thus CT(A|B) is negligible. The same applies for CT(B|A). It
remains an open question whether MGS is unique for strange strings.

The second property of good models is the following: for any good model A for x

the set P[A] is close to the set Px (we say that two sets of pairs are close, if each of
them is included in a small neighborhood of the other).

Fig. 3 The sets Px = P ε
x for the normal string from Theorem 2
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Theorem 4 (on the profile of good models, informal) If A is a good model for x then
the sets Px and P[A] are close.

The profile of a string expresses how stochastic the string is. Adding or removing
noise should not affect stochasticity in any way and thus it should not change the
profile. This theorem says that noise identification via strong sufficient statistics is
consistent with this intuition. Notice that this theorem does not hold for all sufficient
statistics [8, Theorem 3]. That is why we think that strong sufficient statistics capture
better the intuition of noise removal than just sufficient statistics.

Step-wise Denoising Assume that we have removed some noise from a normal data
string x by finding a good model A for x. Theorem 3 states that to remove the remain-
ing noise from x we do not need x anymore: any strong MSS B for x has negligible
total complexity conditional to A. Moreover, if A is itself normal then a strong MSS
B for x can be obtained by denoising A, in a full accordance with our intuition of
step-wise noise removal. Indeed, let A stand for a strong MSS for A. Consider then
the set

B = ∪A′∈A:�log |A′|=�log |A|A′.
This set is a C(A), log |A| + log |A|-description for x, which is an MSS for x by
Theorem 4. Finally, CT(B|x) � CT(B|A) + CT(A|A) + CT(A|x) ≈ 0 + 0 + 0 = 0,
thus B is a strong model for x.

It remains an open question whether any strong MSS for a normal string is normal.

2 Preliminaries

We consider strings over the binary alphabet {0, 1}, and by |x| we denote the length
of a string x. We will use the notation log i for �log2 i. We say that two subsets P, Q

of N2 are ε-close if each of them is in ε-neighborhood of the other (with respect to
L2-norm).

2.1 Kolmogorov Complexity

The Kolmogorov complexity C(x) of a binary string x and conditional Kolmogorov
complexity C(x|y) of a binary string x given another string y are defined as follows.
We call a Turing machine U with input alphabet 0,1 universal if for every other
Turing machine V with the same input alphabet there is a binary string cV such that
U(cV p, y) = V (p, y) for all binary strings p, y. The notation V (p, y) refers to the
output of machine V when run on input binary strings p, y separated by the blank
symbol. Fix a universal machine U and denote U(p, y) by p(y). The conditional
Kolmogorov complexity is defined as

C(x|y) = min{|p| : p(y) = x}.
If p(y) = x, we say that p is a program for x conditional to (or given) y.
Unconditional Kolmogorov complexity C(x) is defined as C(x|empty string).
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The total Kolmogorov complexity is defined as

CT(x|y) = min{|p| : p(y) = x, and p(y ′) is defined for all y ′}.
Kolmogorov complexity of a finite set of strings is defined as follows. We fix

any computable bijection A �→ [A] between finite sets of binary strings and binary
strings and let C(A) = C([A]). The expressions C(x|A), C(A|x) are understood as
C(x|[A]), C([A]|x), respectively. In a similar way we define Kolmogorov complex-
ity of pairs of strings: by definition C(x, y) = C([x, y]), where (x, y) �→ [x, y] is a
computable bijection between pairs of strings and strings.

We will use in the sequel without reference the following properties of Kol-
mogorov complexity:

• The number of strings of Kolmogorov complexity less than k is less than 2k.
• C(x) � |x| + c, C(x|y) � C(x) + c, for some c and all x, y;
• For every computable function f mapping strings to strings there exists c such

that C(f (x)|x) � c and C(f (x)) � C(x) + c for all x;
• (Conditional version of the previous inequality.) For every computable function

f mapping pairs of strings to strings there exists c such that C(f (x, y)|y) �
C(x|y) + c for all x, y;

• Symmetry of information: C(x, y) ≈ C(x) + C(y|x). This equality holds with
“logarithmic precision”. Specifically, we have

C(x, y) � C(x) + C(y|x) + 2 log min{C(x), C(y|x)} + c

for some c and all x, y, and

C(x) + C(y|x) � C(x, y) + 3 log C(x, y) + c.

• (Conditional version of the symmetry of information). For all x, y, z,

C(x, y|z) ≈ C(x|z) + C(y|x, z).

Here one inequality is true up to a 2 log min{C(x|z), C(y|x, z)} + c error term
and the other one up to a 3 log C(x, y|z) + c error term.

2.2 Optimality Deficiency and Randomness Deficiency

The difference C(A) + log |A| − C(x) is called the optimality deficiency of A as a
model for x. The randomness deficiency is always less than the optimality deficiency
and the difference between them equals C(A|x) (with additive error O(log C(x) +
log C(A))). This follows from the symmetry of information:

C(x) + C(A|x) = C(x, A) = C(A) + C(x|A).

Adding log |A| − C(x) − C(x|A) to both sides we obtain the equality

C(A|x) + (log |A| − C(x|A)) = C(A) + log |A| − C(x).

In particular if A is ε-sufficient statistic for x then both C(A|x) and randomness
deficiency of x in A do not exceed ε (with additive error O(log C(x) + log C(A))).
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3 Strange Strings

Our first main result establishes the existence of “strange” strings x.

Theorem 5 (on existence of strange strings, formal) Assume that natural numbers
k, n, ε satisfy the inequalities

O(1) � ε � k � n.

Then there is a string x of length n and complexity k + O(log n) such that the sets
Px and P ε

x are O(log n)-close to the sets shown on Fig. 2.

Theorem 5 does not say anything about how rare are strange strings. Such strings
are rare, as for majority of strings x of length n the set {0, 1}n is a strong MSS for x. A
more meaningful question is whether such strings might appear with high probability
in a statistical experiment. More specifically, assume that we sample a string x in a
given set A ⊂ {0, 1}n, where all elements are equiprobable. Might it happen that with
high probability (say with probability 99 %) x is strange? An affirmative answer to
this question is given in the following

Theorem 6 Assume that natural k, n, ε, δ satisfy the inequalities

O(1) � ε � k � n, δ � k − ε.

Then there is set A ⊂ {0, 1}n of cardinality 2k−ε and complexity at most ε + O(δ +
log n) such that all but 2k−ε−δ its elements x have complexity k + O(δ + log n) and
the sets Px and P ε

x are O(δ + log n)-close to the sets shown on Fig. 2.

Proofs of Theorems 5 and 6. We start with the following observation from [2, 3, 5].

Lemma 7 If a string x has a model A of complexity at most i with C(A)+ log |A| �
m then x has a (i + O(log n)), (m − i)-description B . The same applies to strong
models: if A is ε-strong then B is ε + O(log n)-strong.

Proof If log |A| � m−i there is nothing to prove. Otherwise, let l = log |A|−(m−i)

and chop A into 2l parts of size 2m−i . The part B containing x has complexity at
most C(A) + l + O(log l) and C(A) + l = C(A) + log |A| − (m − i) � i.

To prove the second statement add to the given short total program to transform
x to A the information l in log l � log m � log n bits. The last inequality holds, as
without loss of generality we may assume that m � n.

We will use also another simple observation:

Lemma 8 Assume that A is an ε-strong statistic for a string x of length n. Let y =
[A] be the code of A. Then y has an (ε + O(log n)), n-description.
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Proof Let p be a string of length at most ε such that p(x) = y and p(x ′) is defined
for all strings x ′. Consider the set {p(x ′) | x ′ ∈ {0, 1}n}. Its cardinality is at most 2n

and complexity at most ε + O(log n).

To prove Theorem 5 it suffices to find a set A ⊂ {0, 1}n with

(a) C(A) � ε + O(log n), log |A| � k − ε

which is not covered by sets from the following three families:
(b) the family B consisting of all sets B ⊂ {0, 1}∗ with with C(B) � ε, log |B| �

n − ε − 4,
(c) the family C consisting of all sets M with C(M) � k, log |M| � n − k − 4

whose code [M] has a (ε + O(log n)), n-description, and
(d) the family D consisting of all singletons sets {x} where C(x) < k.

Indeed, assume that we have such set A. As x we can take any non-covered
string in A. Notice that item (a) implies that the complexity of x is at most
k + O(log n), and item (d) implies that it is at least k. Thus the membership of the
pair (k + O(log n), O(log n)) in P ε

x is witnessed by the singleton {x}, provided ε is
greater than the constant from the inequality CT({x}|x) = O(1). The membership
of the pair (O(log n), n − k + O(log n)) in P ε

x and Px will be witnessed by the set
of all strings of length n, provided ε is greater than then constant from the inequality
CT({0, 1}n|x) = O(1). The membership of the pair (ε + O(log n), O(log n)) in Px

will be witnessed by the set A.
The upper bounds for P ε

x and Px follow from (b), (c) and Lemmas 7 and 8. Indeed,
item (b) implies that the pair (ε − O(log n), n − k − O(log n)) is not in Px . Item (c)
implies that the pair (k − O(log n), n − k − O(log n)) is not in P ε

x .
Let us show that there is a set A of n-bit strings satisfying (a), (b), (c) and (d). A

direct counting reveals that the family B ∪ C ∪ D covers at most

2ε+12n−ε−4 + 2k+12n−k−4 + 2k � 2n−3 + 2n−3 + 2n−4 < 2n−1

strings and hence at least half of all n-bit strings are non-covered. However we cannot
let A be any 2k−ε-element non-covered set of n-bit strings, as in that case C(A) could
be large.

We first show how to find A, as in (a), that is not covered by B ∪ D (but may
be covered by C). This is done using the method of [7]. To construct A notice that
both the families B and D can be enumerated given k, ε, n by running the universal
machine U in parallel on all inputs. We start such an enumeration and construct A “in
several attempts”. During the construction we maintain the list of all strings covered
by sets from B ∪ D enumerated so far. Such strings are called marked. Initially, no
strings are marked and A contains the lexicographic first 2k−ε strings of length n.
Each time a new set B ∈ B appears, all its elements receive a b-mark and we replace
A by any set consisting of 2k−ε yet non-marked n-bit strings. Each time a new set
{x} in D appears, the string x receives a d-mark, but we do not immediately replace
A. However we do that when all strings in A receive a d-mark, replacing it by any set
consisting of 2k−ε yet non-marked n-bit strings. The above counting shows that such
replacements are always possible.
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The last version of A (i.e. the version obtained after the last set in B ∪ D have
appeared) is the sought set. Indeed, by construction |A| = 2k−ε and A is not covered
by sets in B ∪ D. It remains to verify that C(A) � ε + O(log n). This follows from
the fact that A is replaced at most O(2ε) times, and hence can be identified by the
number of its replacements and ε, k, n (we run the above construction of A and wait
until the given number of replacements are made).

Why is A replaced at most O(2ε) times? The number of replacements caused by
appearance of a new set B ∈ B is at most 2ε+1. The number of strings with a d-
mark is at most 2k and hence A can be replaced at most 2k/2k−ε = 2ε times due to
receiving d-marks.

Now we have to take into account strings covered by sets from the family C. To
this end modify the construction as follows: put a c-mark on all strings from each set
C enumerated into C and replace A each time when all its elements have received c
or d marks (or when a new set is enumerated into B).

However this modification alone is not enough. Indeed, up to �(2n) strings may
receive a c-mark, and hence A might be replaced up to �(2n−(k−ε)) times due to c-
marks. The crucial modification is the following: each time A is replaced, its new
version is not just any set of 2k−ε non-marked n-bit strings but a carefully chosen
such set.

To explain how to choose A we first represent C as an intersection of two fam-
ilies, C ′ and C ′′. The first family C ′ consists of all sets M with C(M) � k and
the second family C ′′ of all sets C with log |C| � n − k − 4 whose code [C] has
a (ε + O(log n), n)-description. The first family is small (less than 2k+1 sets) and
the second family has only small sets (at most 2n−k−4-element sets) and is not very
large (|C ′′| = 2O(n)). Both families can be enumerated given ε, k, n and, more-
over, the sets from C ′′ appear in the enumeration in at most 2ε+O(log n) portions.
Due to this property of C ′′ we can update A each time a new portion of sets in C ′′
appears—this will increase the number of replacements of A by 2ε+O(log n), which
is OK.

The crucial change in construction is the following: each time A is replaced, its
new version is a set of 2k−ε non-marked n-bit strings that has at most O(n) common
strings with every set from the part of C ′′ enumerated so far. (We will show later that
such a set always exists).

Why does this solve the problem? There are two types of replacements of A: those
caused by enumerating a new set in B or a new bunch of sets in C ′′ and those caused
by that all elements in A have received c- or d-marks. The number of replacement of
the first type is at most 2ε+O(log n). Replacements of the second type are caused by
enumerating new singleton sets in D and by enumerating new sets C in C ′ which were
enumerated into C ′′ on earlier steps. Due to the careful choice of A, when each such
set C appears in the enumeration of C ′ it can mark only O(n) strings in the current
version of A. The total number of sets in C ′ is at most 2k . Therefore the total number
of events “a string in the current version of A receives a c-mark” is at most O(n2k).
The total number of d-marks is at most 2k . Hence the number of replacements of the
second type is at most

(O(n2k) + 2k)/2k−ε = O(n2ε).
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Thus it remains to show that we indeed can always choose A, as described above.
This will follow from a lemma that says that in a large universe one can always choose
a large set that has a small intersection with every set from a given small family of
small sets.

Lemma 9 Assume that a finite family C of subsets of a finite universe U is given and
each set in C has at most s elements. If

|C|
(

N

t + 1

)(
s

|U | − t

)t+1

< 1

then there is an N -element set A ⊂ U that has at most t common elements with each
set in C.

Proof To prove the lemma we use probabilistic method. The first element a1 of A

is chosen at random among all elements in U with uniform distribution, the second
element a2 is chosen with uniform distribution among the remaining elements and so
forth.

We have to show that the statement of the theorem holds with positive probabil-
ity. To this end note that for every fixed C in C and for every fixed set of indexes
{i1, . . . , it+1} ⊂ {1, 2, . . . , N} the probability that all ai1, . . . , ait+1 fall in C is at

most
(

s
|U |−t

)t+1
. The number of sets of indexes as above is

(
N

t+1

)
. By union bound

the probability that a random set A does not satisfy the lemma is upper bounded by
the left hand side of the displayed inequality.

We apply the lemma for U consisting of all non-marked n-bit strings, for N =
2k−ε and for C consisting of all sets in C ′′ appeared so far. Thus s = 2n−k−4, |U | �
2n−1, |C| = 2O(n), and we need to show that for some t = O(n) it holds

2O(n)

(
2k−ε

t + 1

)(
2n−k−4

2n−1 − t

)t+1

< 1,

which easily follows from the inequality
(2k−ε

t+1

)
� 2(k−ε)(t+1). Theorem 5 is proved.

Theorem 6 is proved similarly to Theorem 5. The only difference is that we change
A each time when at least 2k−ε−δ strings in A receive c- or d-marks. As the result,
the number of changes of A will increase 2δ times and the complexity of A will
increase by δ.

4 Good Models and their Properties

The next theorem shows that CT(A|B) is close to C(A|B) for all good models A, B .
In what follows we will consider models for x of complexity at most O(C(x)) (there
is no need for more complex models).

Theorem 10 If A is an ε-strong statistic for x and B is an ε-sufficient statistic for x

then CT(A|B) � C(A|B) + O(ε + log k) where k = C(x).
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Proof The idea is the following. Let p be a program witnessing CT(A|x) � ε.
We first show that A has the following feature: there are many strings x ′ ∈ B with
p(x ′) = [A]. More specifically, at least 2−C(A|B) fraction of x ′ from B have this
property. At most 2C(A|B) sets A′ can have this feature, as each such A′ can be iden-
tified by the portion of x ′ ∈ B with p(x ′) = [A′]. Given B and p we are able to
find a list of all such A′ by means of a short total program. Given B , the set A can be
identified by p and its index in that list.

First we show that there are many x ′ ∈ B with p(x ′) = [A] (otherwise B could
not be a sufficient statistic for x). Let D = {x ′ ∈ B | p(x ′) = [A]}. Obviously, D

includes x and

C(D|B) � C(A|B)

(ignoring terms of order O(ε + log k)). Given B and p the string x can be identified
by its index in D, therefore

C(x|B) � C(D|B) + log |D| � C(A|B) + log |D|.
On the other hand, C(x|B) = log |B|, as B is ε-sufficient. Hence log |D| � log |B|−
C(A|B). Recall that we ignored terms of order O(ε+log k). Actually, we have shown
that for some constant c we have log |D| � log |B| − C(A|B) − c(ε + log k).

Consider now all A′ such that

log |{x ′ ∈ B | p(x ′) = [A′]}| � log |B| − C(A|B) − c(ε + log k).

Each such A′ can be identified by the portion of x ′ ∈ B with p(x ′) = [A′]. Thus there
are at most 2C(A|B)+c(ε+log k) different such A′s. Given B and C(A|B), p, ε we are
able to find the list of all A′s. The program that maps B to the list of A′s is obviously
total. Therefore there is a C(A|B) + O(ε + log k)-bit total program that maps B to
A and CT(A|B) = C(A|B) + O(ε + log k).

We will now derive from this theorem that CT(A|B) is negligible for every strong
MSS A and every sufficient statistic B for the same string x. To state this result
rigorously we have to define the notion of MSS formally. When trying to do that, we
face the following problem: for certain strings x a negligible increase in ε may cause
a large decrease of the minimal complexity of ε-sufficient statistics for x.

We overcome this problem as follows. We call a set A a δ-minimal ε-sufficient
statistic for x if A is an ε-sufficient statistic for x and there is no ε + f (C(x))-
sufficient statistic B for x with

C(B) < C(A) − δ.

Here f (C(x)) denotes a fixed large enough function of C(x) of order O(log C(x))

that will chosen later so that all our results be valid. See Fig. 4.
As before, we think of ε as a large enough value of order O(log C(x)) so that for

all x the singleton set {x} be an ε-sufficient statistic for x and thus ε-sufficient statis-
tics exist. However existence of ε-sufficient statistics does not imply that a δ-minimal
ε-sufficient statistic exists. Indeed, ε-sufficient statistic of the smallest complexity
is not necessarily a δ-minimal ε-sufficient statistic: this happens if we can further
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Fig. 4 The set A is δ-minimal ε-sufficient statistic for x. This means that its parameters lie below the
dashed line and the profile of x is included in the gray set P

decrease the complexity of models for x by δ at the expense of increasing the optimal-
ity deficiency by only f (C(x)). However, if there is a δ-minimal ε-sufficient statistic
for x, then so is any ε-sufficient statistic A for x of the smallest complexity. In that
case the complexity of any other δ-minimal ε-sufficient statistic for x is at most δ

more than that of A.
Now we are going to show that if A is an MSS for x then we can drop the term

C(A|B) in the statement of Theorem 10 and show that CT(A|B) = O(ε+ δ + log k).
To this end we need a new definition.

Let �m denote the number of strings of complexity at most m. Consider its binary
representation, i.e., the sum

�m = 2s1 + 2s2 + . . . + 2st , where s1 > s2 > . . . > st .

According to this decomposition, we may split the list Lm of strings of complexity
at most m into groups: first 2s1 elements, next 2s2 elements, etc. (We assume that an
algorithm is fixed that, given m, enumerates all strings of complexity at most m in
some order. That order is used to partition the list into groups.) Let us denote by Sm,s

the group of size 2s from this partition. Notice that Sm,s is defined only for s that
correspond to ones in the binary representation of �m.

If x is a string of complexity at most m, it belongs to some group Sm,s , and this
group can be considered as a model for x. We may consider different values of m

(starting from C(x)). In this way we get different models Sm,s for the same x. The
complexity of Sm,s is m − s + O(log m). Indeed, chop Lm into portions of size 2s

each, then Sm,s is the last full portion and can be identified by m, s and the number of
full portions, which is less than �m/2s < 2m−s+1. The size of Sm,s is 2s by definition
and thus the sum of complexity and log-cardinality is m + O(log m). The models
Sm,s were introduced in [2].

Theorem 11 (Theorem VIII.4(ii) from [7]) Assume that x ∈ A and m � C(x ′) for
all x ′ ∈ A. Let s be the (unique) integer such that the set Sm,s defined above contains
x. Then Sm,s is simple conditional to A, that is, C(Sm,s | A) = O(log m).
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Actually, the authors of [2, 7] used prefix complexity K in place of the plain
complexity C and Theorem 11 was stated only for m = K(A) + log |A| + O(1).
It is easy to verify that Theorem 11 holds, as we stated it, with the same proof. In
Appendix we present the complete proof.

Corollary 12 Assume that A is a δ-minimal ε-sufficient statistic for x and B is an
ε-sufficient statistic for x. Then C(A|B) = O(δ + log C(x)).

Proof Let m be equal to the maximal complexity of elements of A ∪ B . Let s be the
(unique) integer such that the set Sm,s defined above contains x. Then m � C(x) +
ε + O(log C(x)). Thus the sum of complexity and log-cardinality of Sm,s is at most
C(x) + ε + O(log C(x)). As A is a δ-minimal ε-sufficient statistic for x, we can
conclude that C(Sm,s) � C(A) − δ (provided the function f in the definition of
δ-minimal ε-sufficient statistic is large enough).

By Theorem 11, C(Sm,s |A) is negligible, therefore C(A|Sm,s) is at most O(δ +
log C(x)) (symmetry of information).

Again by Theorem 11, C(Sm,s |B) is negligible. As C(A|B) � C(A|Sm,s) +
C(Sm,s |B), we conclude that C(A|B) is at most O(δ + log C(x)).

This corollary and Theorem 10 imply the following

Theorem 13 (on total complexity of any good MSS given any sufficient statistic,
formal) If A is both a δ-minimal ε-sufficient statistic and an ε-strong model for x

and B is an ε-sufficient statistic for x then CT(A|B) = O(ε + δ + log C(x)).

The next theorem shows that the profile of any good model for x coincides with
the profile of x itself. Recall that two sets are ε-close if each of them is inside ε-
neighborhood of the other (with respect to L2-norm).

Theorem 14 (on the profile of good models, formal) If A is an ε-good model for x

then the sets Px and P([A]) are O(ε + log n)-close. Here n is the length of x.

This theorem is an easy corollary of the following lemma that relates the profiles
of yz and y in the case when z is a random string conditional to y.

Lemma 18 Let x = yz where y is a string of complexity k and z is a string of length
m with C(z|y) � m − δ. Then the sets Px and Py are O(log n + δ)-close.

The proof of this lemma is presented in Appendix.

Proof of Theorem 14 Assume that A is an ε-good model for x. Let z be the log |A|-
bit index of x in A. Then x and [A]z are equivalent (the total conditional complexities
are at most ε + O(log n)).

If both total conditional complexities CT(u|v) and CT(v|u) are less than α then the
sets Pu and Pv are O(α)-close. Indeed, in this case C(u) and C(v) differ by at most
O(α). Furthermore, let p witness the inequality CT(v|u) � α. Then the mapping
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A �→ {p(u′) | u′ ∈ A} is a translation of models of u to models of v showing that Pu

is included in the O(α) neighborhood of Pv. In a similar way we can show that Pv is
included in the O(α) neighborhood of Pu.

Therefore Px and P[A]z are O(ε + log n)-close. On the other hand, C(z|[A]) �
log |A| − ε − O(log n) and by Lemma 15 P[A]z and P[A] are O(ε + log n)-close.

5 A Normal String Having a Weak MSS

The next result is a separation of good and weak models in the case when the sets Px

and P ε
x coincide. Such x will have the form yz where z is a random string conditional

to y, as in the Example 1 and Lemma 15.

Theorem 16 (on existence of a normal string having a bad MSS, formal) For every
k there is a string x of length 3k and Kolmogorov complexity 2k whose set Px and
P

O(log k)
x are O(log k) close to the set shown on Fig. 5. Moreover, the string x has

a model B of complexity C(B) = k and log-cardinality log |B| = k such that
CT(B|x) = k. All equalities here hold up to O(log k) additive error term.

Proof We will let x = yz where |y| = 2k, |z| = k and C(z|y) � k. To construct
y call a string y of length 2k simple if it has a model S with C(S) < k and C(S) +
log |S| < 2k − log 2k. Otherwise call y complex. The total number of simple strings
is strictly less than 22k. Let y be the lexicographical first complex string of length 2k.

Now we let

B = {yz′ | z′ ∈ {0, 1}k} ∪ {x ′ | C(x ′) < k}.
Let us show that CT(B|x) � k. Assume that p is a total program mapping x to B .
Then let u be the first string outside all sets p(x ′′) for |x ′′| = 3k. Then u is outside B

and hence C(u) � k. Hence |p| > k − O(log k).
By construction we have C(y) � k. On the other hand, we claim that C(y) �

k + O(1). Indeed, y can be found given k and the set of all simple strings. The set

Fig. 5 The sets Px = P ε
x for the string x from Theorem 16
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of simple strings can be found given the set of all halting programs of length less
than k, which in turn can be identified by the k-bit number Nk of halting programs of
length less than k (we run all programs of length less than k until Nk of them halt).
The same argument shows that C(B) � k + O(1).

Obviously |B| < 2k+1. It remains to show that x has the required sets Px and
P

O(log k)
x . To this end we first show that the set Py has the form shown on Fig. 5. The

models {0, 1}2k and {y} witness that P
O(log k)
y includes the gray set of Fig. 5. On the

other hand, by construction Py is included in the gray set shown on Fig. 5.
The claim about the set Px now follows from Lemma 15. It remains to show that

the set P
O(log k)
x includes the gray set shown on Fig. 5. This is witnessed by the sets

{0, 1}3k and {x}.

6 Open Questions

1) Is there a string that has non-equivalent MGS?
2) Is there a string that has a strong MSS but no model of the type Sm,s is a strong

MSS for x?
3) Is there such a normal string?
4) Is any strong MSS for a normal string normal?
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Appendix A: Theorem 17 and Deferred Proofs

A.1 Theorem 17

There are strings x for which it is much easier to transform x to a short program x∗
for x than the other way around, and, moreover, it is hard to obtain x from any string
that is significantly shorter than x itself.

Theorem 17 (1) For all n and all strings x of length n there is a program x∗ for x

with CT(x∗|x) � 2 log n + O(1) and |x∗| � C(x) + O(1).
(2) For all n there is a string x of length n and complexity at most n/3 + O(1)

such that for all strings p of length at most 2n/3 we have CT(x|p) � n/3 − 2 (in
particular this holds for all programs p for x of length at most 2n/3).

Proof (1) Theorem 1.1 from [1] shows that there exists a total computable function
f that for any x produces a list with O(|x|2) many elements containing a program
p for x of length |p| = C(x) + O(1). Then CT(p|x) � 2 log n + O(1), as we can
specify p by its index in the list f (x).

(2) Initialize Q to be the empty set and x to be the lexicographically first string
of length n. Run dovetail style all programs q of length at most n/3 − 2 for all
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inputs p of length at most 2n/3. Once such a program q halts for all p, we add q

in the set Q and find a new candidate for x, which is the first string outside the set
{q(p) : q ∈ Q, |p| � 2n/3}.

After at most 2n/3 changes the set Q and the candidate x become stable. As x

can be identified by the number of changes written in exactly n/3 bits, we have
C(x) � n/3 + O(1).

A.2 The proof of Lemma 15

In the proof we will ignore additive error terms of order O(δ + log n). Considering
Py and Px with O(log n) accuracy, we can ignore all models whose complexity or
log-cardinality is not of order O(n).

We have C(x) = C(y) + m. Thus the models of the type {y ′z′ : y ′ ∈ A, z′ ∈
{0, 1}m} witness that Py is included in Px .

To prove that Px is included into Py , we have to transform any i, j -description for
x into a model for x whose complexity is at most i and the sum of complexity and
log-cardinality is at most i + j − m.

To this end consider first the projection of A: {y ′ : |z′| = m, y ′z′ ∈ A}. Unfor-
tunately, this set may be as large as A itself. Reduce it as follows. Consider the yth
section of A: Ay = {z′ : |z′| = m, yz′ ∈ A}. Define l as the natural number such
that 2l � |Ay | < 2l+1. Let A′ be the set of those y ′ whose y ′th section has at least 2l

elements. Then by counting arguments we have |A′| � 2j−l .
Then improve A′ using a result of [7]:

Lemma 18 (Lemma C.4 on page 3285 in [7]) For every A′ � y there is A′′ � y with
C(A′′) � C(A′) − C(A′|y) + O(log(C(A′) + log |A′|)) and log |A′′| = log |A′|.

By this lemma we get a (C(A′)−C(A′|y)), (j − l)-description of y. We claim that

C(A′) − C(A′|y) � C(A) − C(A|y). (1)

Indeed, C(A′|A) is negligible hence C(y|A′) � (y|A). This implies that

C(y) − C(y|A′) � C(y) − C(y|A).

By the symmetry of information this inequality is equivalent to (1). Thus A′′ is a
(C(A)−C(A|y)), (j−l)-description of y. The sum of complexity and log-cardinality
of this description is at most

C(A) − C(A|y) + j − l � i − C(A|y) + j − l.

We claim that this is less than i + j − m, that is, C(A|y) � m − l.
To lower bound l, we will relate it to the conditional complexity of z given y and

A. Indeed, we have C(z|A, y) � l, as z can be identified by its ordinal number in yth
section of A. On the other hand,

C(z|A, y) � C(z|y) − C(A|y) � m − C(A|y).
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A.3 Proof of Theorem 11

The set Sm,s can be effectively found from m, s and the number M = ��m/2s+1�:
we enumerate the list Lm of strings of complexity at most m until M2s+1 +2s strings
are enumerated, the 2s last enumerated strings form the set Sm,s .

To find the number M from A and m, s, enumerate strings into the list Lm until
all strings from A are enumerated. We claim that the index I of the last enumerated
enumerated string from A satisfies the equality �I/2s+1� = M .

Indeed, starting from the first string from Sm,s , the index I ′ of every string x ′
in the list Lm satisfies the equality �I ′/2s+1� = M . Therefore this equality holds
also for the index of x (as x ∈ Sm,s ) and for indexes of all strings in A which were
enumerated after x.
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