
Algorithmic Minimal Sufficient Statistic

Revisited

Nikolay Vereshchagin

Moscow State University, Leninskie gory 1,
Moscow 119991, Russia

ver@mccme.ru

http://lpcs.math.msu.su/ ˜ ver

Abstract. We express some criticism about the definition of an algo-
rithmic sufficient statistic and, in particular, of an algorithmic minimal
sufficient statistic. We propose another definition, which might have bet-
ter properties.

1 Introduction

Let x be a binary string. A finite set A containing x is called an (algorithmic)
sufficient statistic of x if the sum of Kolmogorov complexity of A and the log-
cardinality of A is close to Kolmogorov complexity C(x) of x:

C(A) + log2 |A| ≈ C(x). (1)

Let A∗ denote a minimal length description of A and i the index of x in the list
of all elements of A arranged lexicographically. The equality (1) means that the
two part description (A∗, i) of x is as concise as the minimal length code of x.

It turns out that A is a sufficient statistic of x iff C(A|x) ≈ 0 and C(x|A) ≈
log |A|. The former equality means that the information in A∗ is a part of in-
formation in x. The latter equality means that x is a typical member of A: x
has no regularities that allow to describe x given A in a shorter way than just
by specifying its log |A|-bit index in A. Thus A∗ contains all useful information
present in x and i contains only accidental information (noise).

Sufficient statistics may also contain noise. For example, this happens if x
is a random string and A = {x}. Is it true that for all x there is a sufficient
statistic that contains no noise? To answer this question we can try to use the
notion of a minimal sufficient statistics defined in [3]. In this paper we argue that
(1) this notion is not well-defined for some x (although for some x the notion
is well-defined) and (2) even for those x for which the notion of a minimal
sufficient statistic is well-defined not every minimal sufficient statistic qualifies
for a “denoised version of x”. We propose another definition of a (minimal)
sufficient statistic that might have better properties.

K. Ambos-Spies, B. Löwe, and W. Merkle (Eds.): CiE 2009, LNCS 5635, pp. 478–487, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Algorithmic Minimal Sufficient Statistic Revisited 479

2 Sufficient Statistics

Let x be a given string of length n. The goal of algorithmic statistics is to
“explain” x. As possible explanations we consider finite sets containing x. We
call any finite A � x a model for x. Every model A corresponds to the sta-
tistical hypothesis “x was obtained by selecting a random element of A”. In
which case is such a hypothesis plausible? As argued in [3,4,5], it is plausible
if C(x|A) ≈ log |A| and C(A|x) ≈ 0 (we prefer to avoid rigorous definitions
up to a certain point; approximate equalities should be thought as equalities
up to an additive O(log n) term). In the expressions C(x|A), C(A|x) the set A
is understood as a finite object. More precisely, we fix any computable bijec-
tion A �→ [A] between finite sets of binary strings and binary strings and let
C(x|A) = C(x|[A]), C(A|x) = C([A]|x), C(A) = C([A]).

As shown in [3,5] this is equivalent to saying that C(A) + log |A| ≈ C(x).
Indeed, assume that A contains x and C(A) ≤ n. Then, given A, the string x can
be specified by its log |A|-bit index in A. Recalling the symmetry of information
and omitting additive terms of order O(log n), we obtain

C(x) ≤ C(x) + C(A|x) = C(A) + C(x|A) ≤ C(A) + log |A|.

Assume now that C(x|A) ≈ log |A| and C(A|x) ≈ 0. Then all inequalities here
become equalities and hence A is a sufficient statistic. Conversely, if C(x) ≈
C(A)+log |A| then the left hand side and the right hand side in these inequalities
coincide. Thus C(x|A) ≈ log |A| and C(A|x) ≈ 0.

The inequality
C(x) ≤ C(A) + log |A| (2)

(which is true up to an additive O(log n) term) has the following meaning. Con-
sider the two part code (A∗, i) of x, consisting of the minimal program A∗ for x
and the log |A|-bit index of x in the list of all elements of A arranged lexicographi-
cally. The equality means that its total length C(A)+log |A| cannot exceed C(x).
If C(A)+log |A| is close to C(x), then we call A a sufficient statistic of x. To make
this notion rigorous we have to specify what we mean by “closeness”. In [3] this is
specified as follows: fix a constant c and call A a sufficient statistic if

|(C(A) + log |A|) − C(x)| ≤ c. (3)

More precisely, [3] uses prefix complexity K in place of plain complexity C. For
prefix complexity the inequality (2) holds up to a constant error term. If we
choose c large enough then sufficient statistics exists, witnessed by A = {x}.
(The paper [1] suggests to set c = 0 and to use C(x|n) and C(A|n) in place
of C(x) and C(A) in the definition of a sufficient statistic. For such definition
sufficient statistics might not exist.)

To avoid the discussion on how small c should be let us call A � x a c-sufficient
statistic if (3) holds. The smaller c is the more sufficient A is. This notion is non-
vacuous only for c = O(log n) as the inequality (2) holds only with logarithmic
precision.

480 N. Vereshchagin

3 Minimal Sufficient Statistics

Naturally, we are interested in squeezing as much noise from the given string x
as possible. What does it mean? Every sufficient statistic A identifies log |A| bits
of noise in x. Thus a sufficient statistic with maximal log |A| (and hence minimal
C(A)) identifies the maximal possible amount of noise in x. So we arrive at the
notion of a minimal sufficient statistic: a sufficient statistic with minimal C(A)
is called a minimal sufficient statistic (MSS).

Is this notion well-defined? Recall that actually we only have the notion of a
c-sufficient statistic (where c is either a parameter or a constant). That is, we
have actually defined the notion of a minimal c-sufficient statistic. Is this a good
notion? We argue that for some strings x it is not whatever the value of c is.
There are strings x for which it is impossible to identify MSS in an intuitively
appealing way. For those x the complexity of the minimal c-sufficient statistic
decreases substantially, as c increases a little.

To present such strings we need to recall a theorem from [7]. Let Sx stand for
the structure set of x:

Sx = {(i, j) | ∃A � x, C(A) ≤ i, log |A| ≤ j}.
This set can be identified by either of its two “border line” functions:

hx(i)=min{log |A| | A � x, C(A)≤ i}, gx(j)=min{C(A) | A � x, log |A|≤j}.
The function hx is called the Kolmogorov structure function of x; for small i it
might take infinite values due to lack of models of small complexity. In contrast,
the function gx is total for all x.

As pointed out by Kolmogorov [4], the structure set Sx of every string x of
length n and Kolmogorov complexity k has the following three properties (we
state the properties in terms of the function gx): (1) gx(0) = k+O(1) (witnessed
by A = {x}). (2) gx(n) = O(log n) (witnessed by A = {0, 1}n). (3) gx in non-
increasing and gx(j + l) ≥ gx(j) − l − O(log l) for every j, l ∈ N.

For the proof of the last property see [5,7]. Properties (1) and (3) imply that
i + j ≥ k −O(log n) for every (i, j) ∈ Sx. Sufficient statistics correspond to those
(i, j) ∈ Sx with i+ j ≈ k. The line i+ j = k is therefore called the sufficiency line.

A result of [7, Remark IV.4] states that for every g that satisfies (1)–(3) there
is x of length n and complexity close to k such that gx is close to g.1 More
specifically, the following holds:

Theorem 1 ([7]). Let g be any non-increasing function g : {0, . . . , n} → N

such that g(0) = k, g(n) = 0 and such that g(j + l) ≥ gx(j)− l for every j, l ∈ N

with j+ l ≤ n. Then there is a string x of length n and complexity k±ε such that
|gx(j) − g(j)| ≤ ε for all j ≤ n. Here ε = O(log n + C(g)) and C(g) stands for
the Kolmogorov complexity of the graph of g: C(g) = C({〈j, g(j)〉 | 0 ≤ j ≤ n}.
1 Actually, [7] provides the description of possible shapes of Sx in terms of the Kol-

mogorov structure function hx. We use here gx instead of hx, as in terms of gx the
description is easier to understand.

Algorithmic Minimal Sufficient Statistic Revisited 481

log|A|k+alphak

k

C(A)

Fig. 1. The structure function of a string for which MSS is not well-defined

We are ready to present strings for which the notion of a MSS is not well-
defined. Fix a large n and let k = n/2 and g(j) = max{k− jk/(k+α), 0}, where
α = α(k) ≤ k is a computable function of k with natural values. Then n, k, g
satisfy all conditions of Theorem 1. Hence there is a string x of length n and
complexity k+O(log n) with gx(j) = g(j)+O(log n) (note that C(g) = O(log n)).
Its structure function is shown on Fig. 1. Choose α so that α/k is negligible
(compared to k) but α is not.

For very small j the graph of gx is close to the sufficiency line and for j = k+α
it is already at a large distance α from it. As j increases by one, the value
gx(j) + j −C(x) increases by at most α/(k + α) + O(log n), which is negligible.
Therefore, it is not clear where the graph of gx leaves the sufficiency line. The
complexity of the minimal c-sufficient statistic is k − (c + O(log n)) · k/α and
decreases fast as a function of c.

Thus there are strings for which it is hard to identify the complexity of MSS.
There is also another minor point regarding minimal sufficient statistics. Namely,
there is a string x for which the complexity of minimal sufficient statistic is well-
defined but not all MSS qualify as denoised versions of x. Namely, some of
them have a weird structure function. What kind of structure set we expect of a
denoised string? To answer this question consider the following example. Let y
be a string, m a natural number and z a string of length l(z) = m that is random
relative to y. The latter means that C(z|y) ≥ m− β for a small β. Consider the
string x = 〈y, z〉. Intuitively, z is a noise in x. In other words, we can say that
y is obtained from x by removing m bits of noise. What is the relation between
the structure set of x and that of y?

Theorem 2. Assumethatz is a stringof lengthmwithC(z|y) ≥ m−β.Then forall
j ≥ mwe have gx(j) = gy(j−m) and for all j ≤ mwe have gx(j) = C(y)+m−j =
gy(0) + m − j. The equalities here hold up to O(log m + log C(y) + β) term.

Proof. In the proof we will ignore terms of order O(log m + log C(y) + β).
The easy part is the equality gx(j) = C(y) + m − j for j ≤ m. Indeed, we

have gx(m) ≤ C(y) witnessed by A = {〈y, z′〉 | l(z′) = m}. On the other hand,

482 N. Vereshchagin

C(y)

log|A|

C(A) C(A)

m

C(y)+m

C(y)

log|A|

Fig. 2. Structure functions of y and x

gx(0) = C(x) = C(y) + C(z|y) = C(y) + m. Thus gx(j) should have maximal
possible rate of decrease on the segment [0, m] to drop from C(y) + m to C(y).

Another easy part is the inequality gx(j) ≤ gy(j−m). Indeed, for every model
A of y with |A| ≤ 2j−m consider the model

A′ = A × {0, 1}m = {〈y′, z′〉 | y′ ∈ A, l(z′) = m}
of cardinality at most 2j . Its complexity is at most that of |A|, which proves
gx(j) ≤ gy(j − m).

The tricky part is the inverse inequality gx(j) ≥ gy(j −m). Let A be a model
for x with |A| ≤ 2j and C(A) = gy(j). We need to show that there is a model
of y of cardinality at most 2j−m and of the same (or lower) complexity. We will
prove it in a non-constructive way using a result from [7].

The first idea is to consider the projection of A: {y′ | 〈y′, z′〉 ∈ A}. However
this set may be as large as A itself. Reduce it as follows. Consider the yth
section of A: Ay = {z′ | 〈y, z′〉 ∈ A}. Define i as the natural number such that
2i ≤ |Ay| < 2i+1. Let A′ be the set of those y′ whose y′th section has at least
2i elements. Then by counting arguments we have |A′| ≤ 2j−i. If i ≥ m, we are
done. However, it might be not the case. To lower bound i, we will relate it to
the conditional complexity of z given y and A. Indeed, we have C(z|A, y) ≤ i,
as z can be identified by its ordinal number in yth section of A. Hence we know
that log |A′| ≤ j − C(z|A, y). Now we will improve A′ using a result of [7]:

Lemma 1 (Lemma A.4 in [7]). For every A′ � y there is A′′ � y with
C(A′′) ≤ C(A′) − C(A′|y) and �log |A′′| = �log |A′|.
By this lemma we get the inequality

gy(j − C(z|A, y)) ≤ C(A′) − C(A′|y).

Note that

C(A′) − C(A′|y) = I(y : A′) ≤ I(y : A) = C(A) − C(A|y),

as C(A′|A) is negligible. Thus we have

gy(j − C(z|A, y)) ≤ C(A) − C(A|y).

We claim that by the property (3) of the structure set this inequality implies
that gy(j − m) ≤ C(A). Indeed, as C(z|A, y) ≤ m we have by property (3):

gy(j − m) ≤ m − C(z|A, y) + C(A) − C(A|y) ≤ m + C(A) − C(z|y) = C(A).

Algorithmic Minimal Sufficient Statistic Revisited 483

In all the above inequalities, we need to be careful about the error term, as they
include sets, denoted by A or A′, and thus the error term includes O(log C(A)) or
O(log C(A′)). All the sets involved are either models of y or of x. W.l.o.g. we may
assume that their complexity is at most C(x)+O(1). Indeed, there is no need to
consider models of y or x of larger complexity, as the models {y} and {x} have
the least possible cardinality and their complexity is at most C(x)+O(1). Since
C(x) ≤ C(y) + O(C(z|y)) ≤ C(y) + O(m), the term O(log C(A)) is absorbed by
the general error term.

This theorem answers our question: if y is obtained from x by removing m bits
of noise then we expect that gy satisfy Theorem 2. Now we will show that there
are strings x as in Theorem 2 for which the notion of the MSS is well-defined
but the structure function of some minimal sufficient statistics does not satisfy
Theorem 2. The structure set of a finite set A of strings is defined as that of
[A]. It is not hard to see that if we switch to another computable bijection
A �→ [A] the value of g[A](j) changes by an additive constant. Thus SA and gA

are well-defined for finite sets A.

Theorem 3. For every k there is a string y of length 2k and Kolmogorov com-
plexity C(y) = k such that

gy(j) =
{

k, if j ≤ k,
2k − j, if k ≤ j ≤ 2k

and hence for any z of length k and conditional complexity C(z|y) = k the
structure function of the sting x = 〈y, z〉 is the following

gx(j) =

⎧

⎨

⎩

2k − j, if j ≤ k,
k, if k ≤ j ≤ 2k,
3k − j, if 2k ≤ j ≤ 3k.

(See Fig. 3.) Moreover, for every such z the string x = 〈y, z〉 has a model B of
complexity C(B) = k and log-cardinality log |B| = k such that gB(j) = k for all
j ≤ 2k. All equalities here hold up to O(log k) additive error term.

The structure set of x = 〈y, z〉 clearly leaves the sufficiency line at the point
j = k. Thus k is intuitively the complexity of minimal sufficient statistic and
both models A = y×{0, 1}k and B are minimal sufficient statistics. The model A,
as finite object, is identical to y and hence the structure function of A coincides
with that of y. In contrast, the shape of the structure set of B is intuitively
incompatible with the hypothesis that B, as a finite object, is a denoised x.

4 Desired Properties of Sufficient Statistics and a New
Definition

We have seen that there is a string x that has two very different minimal sufficient
statistics A and B. Recall the probabilistic notion of sufficient statistic [2]. In the

484 N. Vereshchagin

log|A|

k 2k

k

C(A)

log|A|

k 2k

k

C(A)

2k

3k

Fig. 3. Structure functions of y and x

probabilistic setting, we are given a parameter set Θ and for each θ ∈ Θ we are
given a probability distribution on a set X . For every probability distribution
on Θ we thus obtain a probability distribution on Θ × X . A function f : X →
Y (where Y is any set) is called a sufficient statistic, if for every probability
distribution on Θ, the random variables x and θ are independent relative to
f(x). That is, for all a ∈ X , c ∈ Θ,

Prob[θ = c|x = a] = Prob[θ = c|f(x) = f(a)].

In other words, x → f(x) → θ is a Markov chain (for every probability distribu-
tion on Θ). We say that a sufficient statistic f is less than a sufficient statistic
g if for some function h with probability 1 it holds f(x) ≡ h(g(x)). An easy
observation is that there is always a sufficient statistic f that is less than any
other sufficient statistic: f(a) is equal to the function c �→ Prob[θ = c|x = a].
Such sufficient statistics are called minimal. Any two minimal sufficient statistics
have the same distribution and by definition every minimal sufficient statistic
is a function of every sufficient statistic. Is it possible to define a notion of an
algorithmic sufficient statistic that has similar properties? More specifically, we
wish it to have the following properties.

(1) If A is an (algorithmic) sufficient statistic of x and log |A| = m then the
structure function of y = A satisfies the equality of Theorem 2. In particular,
structure functions of every MSS A, B of x coincide.

(2) Assume that A is a MSS andB is a sufficient statistic of x. Then C(A|B) ≈ 0.
As the example of Theorem 3 demonstrates, the property (1) does not hold

for the definitions of Sections 2 and 3, and we do not know whether (2) holds.
Now we propose an approach towards a definition that (hopefully) satisfies both
(1) and (2). The main idea of the definition is as follows. As observed in [6],
in order to have the same structure sets, the strings x, y should be equivalent
in the following strong sense: there should exist short total programs p, q with
D(p, x) = y and D(q, y) = x (where D is an optimal description mode in the
definition of conditional Kolmogorov complexity). A program p is called total if
D(p, z) converges for all z.

Algorithmic Minimal Sufficient Statistic Revisited 485

Let CTD(x|y) stand for the minimal length of p such that p is total and
D(p, y) = x. For the sequel we need that the conditional description mode D have
the following property. For any other description mode D′ there is a constant
c such that CTD(x|y) ≤ CTD′(x|y) + c for all x, y. (The existence of such a D
is straightforward.) Fixing such D we get the defintion of the total Kolmogorov
complexity CT(x|y). If both CT(x|y),CT(y|x) are small then we will say that
x, y are strongly equivalent. The following lemma is straightforward.

Lemma 2. For all x, y we have |gx(j) − gy(j)| ≤ 2 max{CT(x|y),CT(y|x)} +
O(1). (If x, y are strongly equivalent then their structure sets are close.)

Call A a strongly sufficient statistic of x if CT(A|x) ≈ 0 and C(x|A) ≈ log |A|.
More specifically, call a model A of x an α, β-strongly sufficient statistic of x
if CT(A|x) ≤ α and C(x|A) ≥ log |A| − β. The following theorem states that
strongly sufficient statistics satisfy the property (1). It is a direct corollary of
Theorem 2 and Lemma 2.

Theorem 4. Assume that y is an α, β-strongly sufficient statistic of x and
log |y| = m. Then for all j ≥ m we have gx(j) = gy(j − m) and for all j ≤ m
we have gx(j) = C(y) + m − j. The equalities here hold up to a O(log C(y) +
log m + α + β) term.

Let us turn now to the second desired property of algorithmic sufficient statistics.
We do not know whether (2) holds in the case when both A, B are strongly
sufficient statistics. Actually, for strongly sufficient statistics it is more natural to
require that the property (2) hold in a stronger form: (2’) Assume that A is a MSS
and both A, B are strongly sufficient statistics of x. Then CT(A|B) ≈ 0. Or, in an
even stronger form: (2”) Assume that A is a minimal strongly sufficient statistic
(MSSS) of x and B is a strongly sufficient statistic of x. Then CT(A|B) ≈ 0.

An interesting related question: (3) Is there always a strongly sufficient statis-
tic that is a MSS?

Of course, we should require that properties (2), (2’) and (2”) hold only for
those x for which the notion of MSS or MSSS is well-defined. Let us state the
properties in a formal way. To this end we introduce the notation Δx(A) =
CT(A|x)+log |A|−C(x|A), which measures “the deficiency of strong sufficiency”
of a model A of x. In the case x �∈ A we let Δx(A) = ∞. To avoid cumbersome
notations we reduce generality and focus on strings x whose structure set is as
in Theorem 3. In this case the properties (2’) and (3) read as follows: (2’) For
all models A, B of x,

CT(A|B) = O(|C(A) − k| + ΔTx(A) + ΔTx(B) + log k).

(3) Is there always a model A of x such that CT(A|x) = O(log k), log |A| =
k + O(log k) and C(x|A) = k + O(log k).

It is not clear how to formulate property (2”) even in the case of strings x
satisfying Theorem 3 (the knowledge of gx does not help).

We are only able to prove (2’) in the case when both A, B are MSS. By a
result of [7], in this case C(A|B) ≈ 0 (see Theorem 5 below). Thus our result

486 N. Vereshchagin

strengthens this result of [7] in the case when both A, B are strongly sufficient
statistics (actually we need only that A is strong).

Let us present the mentioned result of [7]. Recalling that the notion of MSS is
not well-defined, the reader should not expect a simple formulation. Let d(u, v)
stand for max{C(u|v), C(v|u)} (a sort of algorithmic distance between u and v).

Theorem 5 (Theorem V.4(iii) from [7]). Let N i stand for the number of
strings of complexity at most i. 2 For all A � x and i, either d(N i, A) ≤ C(A)−i,
or there is T � x such that log |T | + C(T) ≤ log |A| + C(A) and C(T) ≤ i −
d(N i, A), where all inequalities hold up to O(log(|A| + C(A))) additive term.

Theorem 6. There is a function γ = O(log n) of n such that the following
holds. Assume that we are given a string x of length n and natural numbers
i ≤ n and ε < δ ≤ n such that the complexity of every ε + γ-sufficient statistic
of x is greater than i − δ. Then for every ε-sufficient statistics A, B of x of
complexity at most i + ε, we have CT(A|B) ≤ 2 · CT(A|x) + ε + 2δ + γ.

Let us see what this statement yields for the string x = 〈y, z〉 from Theorem 3.
Let i = k and ε = 100 log k, say. Then the assumption of Theorem 6 holds for
δ = O(log k) and thus CT(A|B) ≤ 2·CT(A|x)+O(log k) for all 100 logk-sufficient
B, A of complexity at most k + 100 logk.

Proof. Fix models A, B as in Theorem 6. We claim that if γ = c logn and c is a
large enough constant, then the assumption of Theorem 6 implies d(B, A) ≤ 2δ+
O(log n). Indeed, we have K(A)+log |A| = O(n). Therefore all the inequalities of
Theorem 5 hold with O(log n) precision. Thus for some constant c, by Theorem 5
we have d(N i, A) ≤ ε + c log n (in the first case) or we have a T with C(T) +
log |T | ≤ i + ε + c log n and d(N i, A) ≤ i − C(T) + c log n (in the second case).
Let γ = c logn. The assumption of Theorem 6 then implies that in the second
case C(T) > i − δ and hence d(N i, A) < δ + c log n. Thus anyway we have
d(N i, A) ≤ δ + c logn. The same arguments apply to B and therefore d(A, B) ≤
2δ + O(log n).

In the course of the proof, we will neglect terms of order O(log n). They will
be absorbed by γ in the final upper bound of CT(A|B) (we may increase γ).

Let p be a total program witnessing CT(A|x). We will prove that there are
many x′ ∈ B with x′ ∈ p(x′) = A (otherwise C(x|B) would be smaller than
assumed). We will then consider all A′ such that there are many x′ ∈ B with
x′ ∈ p(x′) = A′. We will then identify A given B in few bits by its ordinal
number among all such A′s.

Let D = {x′ ∈ B | x′ ∈ p(x′) = A}. Obviously, D is a model of x with

C(D|B) ≤ C(A|B) + l(p) ≤ 2δ + l(p).

Therefore
C(x|B) ≤ C(D|B) + log |D| ≤ log |D| + 2δ + l(p).

2 Actually, the authors of [7] use prefix complexity in place of the plain complexity. It
is easy to verify that Theorem V.4(iii) holds for plain complexity as well.

Algorithmic Minimal Sufficient Statistic Revisited 487

On the other hand, C(x|B) ≥ log |B| − ε, hence log |D| ≥ log |B| − ε− 2δ− l(p).
Consider now all A′ such that

log |{x′ ∈ B | x′ ∈ p(x′) = A′}| ≥ log |B| − ε − 2δ − l(p).

These A′ are pairwise disjoint and each of them has at least |B|/2ε+2δ+l(p)

elements of B. Thus there are at most 2ε+2δ+l(p) different such A′s. Given B
and p, ε, δ we are able to find the list of all A′s. The program that maps B to the
list of A′s is obviously total. Therefore there is a total program of ε + 2δ + 2l(p)
bits that maps B to A and CT(A|B) ≤ ε + 2δ + 2l(p).

Another interesting related question is whether the following holds: (4) Merging
strongly sufficient statistics: If A, B are strongly sufficient statistics for x then x
has a strongly sufficient statistic D with log |D| ≈ log |A|+ log |B| − log |A∩B|.

It is not hard to see that (4) implies (2”). Indeed, as merging A and B cannot
result in a strongly sufficient statistic larger than A we have log |B| ≈ log |A∩B|.
Thus to prove that CT(A|B) is negligible, we can argue as in the last part of
the proof of Theorem 6.

References

1. Antunes, L., Fortnow, L.: Sophistication revisited. In: Baeten, J.C.M., Lenstra, J.K.,
Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 267–277.
Springer, Heidelberg (2003)

2. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York
(1991)

3. Gács, P., Tromp, J., Vitányi, P.M.B.: Algorithmic statistics. IEEE Trans. Inform.
Th. 47(6), 2443–2463 (2001)

4. Kolmogorov, A.N.: Talk at the Information Theory Symposium in Tallinn, Estonia
(1974)

5. Shen, A.K.: Discussion on Kolmogorov complexity and statistical analysis. The
Computer Journal 42(4), 340–342 (1999)

6. Shen, A.K.: Personal communication (2002)
7. Vereshchagin, N.K., Vitányi, P.M.B.: Kolmogorov’s structure functions and model

selection. IEEE Trans. Information Theory 50(12), 3265–3290 (2004)

	Algorithmic Minimal Sufficient Statistic Revisited
	Introduction
	Sufficient Statistics
	Minimal Sufficient Statistics
	Desired Properties of Sufficient Statistics and a New Definition

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

