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A Conditional Information Inequality and its
Combinatorial Applications

Tarik Kaced, Andrei Romashchenko, and Nikolay Vereshchagin

Abstract—We show that the inequality H(A|B,X) +
H(A|B, Y ) 6 H(A|B) for jointly distributed random variables
A,B,X, Y , which does not hold in general case, holds un-
der some natural condition on the support of the probability
distribution of A,B,X, Y . This result generalizes a version
of the conditional Ingleton inequality: if for some distribution
I(X : Y |A) = H(A|X,Y ) = 0, then I(A : B) 6 I(A : B|X) +
I(A : B|Y ) + I(X : Y ).

We present two applications of our result. The first one is the
following easy-to-formulate theorem on edge colorings of bipartite
graphs: assume that the edges of a bipartite graph are colored in
K colors so that each two edges sharing a vertex have different
colors and for each pair (left vertex x, right vertex y) there is at
most one color a such both x and y are incident to edges with
color a; assume further that the degree of each left vertex is at
least L and the degree of each right vertex is at least R. Then
K > LR. The second application is a new method to prove lower
bounds for biclique cover of bipartite graphs.

Keywords—Shannon entropy, conditional information inequal-
ities, non Shannon type information inequalities, biclique cover,
edge coloring

I. INTRODUCTION

The most general and fundamental properties of Shan-
non’s entropy can be expressed in the language of linear
inequalities. The usual universal information inequalities (the
linear inequalities that hold for Shannon’s entropies of jointly
distributed tuples of random variables for every distribution)
have many equivalent characterizations and interpretations in
very different areas — these inequalities can be equivalently
reformulated in the settings of Kolmogorov complexity and
group theory; they give characterizations of the network coding
capacity rates, of the cardinalities of projections of finite
sets, etc., see the surveys in [11], [22], [23]. The parallel
and interplay between different “incarnations” of information
inequalities lead to their better understanding and to more
efficient applications of this technique. However, there exists
a class of less common information inequalities that still lack
a satisfactory explanation and have no clear combinatorial
interpretation. These are the conditional linear information
inequalities, which hold only for distributions that satisfy some
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constraints. The first nontrivial example of a conditional linear
information inequality was proven in the seminal paper [6];
see a survey of other similar results in [25]. Until now, these
inequalities looked like artifacts without practical or theoretical
application. In this paper, we argue that some conditional in-
equalities can be naturally interpreted in purely combinatorial
terms. We propose a new “conditional information inequality,”
discuss its combinatorial meaning, and show how it can be
employed in purely combinatorial proofs.

Let A,X, Y be jointly distributed discrete random variables.
In this paper, we consider the inequality

H(A|X) +H(A|Y ) 6 H(A), (1)

where H(·) stands for Shannon’s entropy. For some A,X, Y
this inequality is false, e.g., for constant X,Y and non-constant
A. We provide a natural condition on the distribution of
A,X, Y implying inequality (1). Then we provide two com-
binatorial applications of the resulting conditional inequality
and show that it implies the conditional inequality from [21].

More specifically we consider the following condition:

for each quadruple of values a, a′, x, y,
if the probabilities of all four events

[A = a,X = x], [A = a, Y = y],

[A = a′, X = x], [A = a′, Y = y]

are positive, then a = a′.

(2)

Theorem 1. The inequality (1) holds for all random variables
A,X, Y satisfying (2).

We first prove this theorem and then show its combinatorial
applications.

II. NOTATION

To simplify formulas, we use the following notation for the
marginal distributions (conditional and unconditional): p(a)
denotes Pr[A = a], p(a, x) = Pr[A = a, X = x],
p(a|x) = Pr[A = a|X = x], p(a, y) = Pr[A = a, Y = y],
and so on.

If X is a random variable and E is an event in the same
probabilistic space (and Pr[E ] > 0), we denote by X|E the
conditional distribution of X , i.e., the restriction of X on the
subspace corresponding to the event E . For example, for jointly
distributed random variables (X,Y ) we denote by X|(Y = y)
the conditional distribution of X under the assumption Y = y.
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III. THE PROOF OF THEOREM 1

We apply the method of [6], [8]. The crucial property of
inequality (1) is that no term contains both X and Y . The
inequality (1) can be re-written in terms of unconditional
entropies as follows:

H(A,X) +H(A, Y ) 6 H(X) +H(Y ) +H(A).

Thus it means that the average value of the logarithm of the
ratio

p(x)p(y)p(a)

p(a, x)p(a, y)
(3)

is less than or equal to 0. The average is computed with respect
to the distribution p(a, x, y). Computing the average, we take
into account only the triples (a, x, y) with positive probability.
For such triples, both the numerator and denominator of
ratio (3) are positive and hence its logarithm is well defined.

Now consider a new distribution p′ where

p′(a, x, y) =

{
p(a,x)p(a,y)

p(a) if p(a) > 0,

0 otherwise.

Random variables distributed according to p′ can be generated
by the following process: First generate a using the original
distribution of A, then generate independently x using the
conditional distribution x|a and y using the conditional dis-
tribution y|a.

Notice that p′(a, x, y) is positive if so is p(a, x, y) but not
the other way around. However, ratio (3) is still well defined
and positive for all triples a, x, y with positive p′(a, x, y).
Therefore we can compute the average value of the logarithm
of (3) using the distribution p′ in place of p. Moreover,
changing the distribution does not affect the average. Indeed,
the logarithm of (3) is the sum of logarithms of its factors.
Thus it suffices to show that the average of the logarithm of
each factor is not affected when p is replaced by p′. Let us
prove this, say, for the factor 1/p(a, x).

This factor does not depend on y. Therefore the average of
its logarithm does not depend on how p(a, x) is split among
p(a, x, y) for different values y: we just sum up log 1/p(a, x)
over all a, x with weights p(a, x). As p(a, x) = p′(a, x),
summing with weights p′(a, x) will yield the same result.

By Jensen’s inequality1 the average value of the logarithm
of the ratio (3) with respect to the distribution p′ is at most

log
( ∑
a,x,y:p′(a,x,y)>0

p(x)p(y)
)
.

The condition (2) guarantees that for each x, y there is at
most one a with p(a, x) > 0, p(a, y) > 0 and hence

log
( ∑
a,x,y:p′(a,x,y)>0

p(x)p(y)
)
6 log

(∑
x,y

p(x)p(y)
)

= log 1 = 0.

1We need Jensen’s inequality for the logarithmic function: let p1, . . . , pn
be positive numbers that sum up to 1; then p1 log x1 + · · · + pn log xn 6
log(p1x1 + · · ·+ pnxn).

IV. COMBINATORIAL APPLICATIONS OF THEOREM 1
A. A lower bound for the number of colors in edge colorings
of bipartite graphs

An edge coloring of a graph is an assignment of colors to
its edges so that each two edges sharing a node have different
colors. Finding the edge coloring number (the minimum pos-
sible number of colors in an edge coloring) of a given graph is
a classic problem of graph theory. The study of edge coloring
is motivated by theoretical aspects of graph theory as well as
by numerous applications in information theory and computer
science (mostly by different types of scheduling problems, see
a survey in [24]).

Vizing’s theorem [1] claims that the edge coloring number
of a graph is either its maximum degree d or d+1; for bipartite
graphs the number of colors is always d. From Theorem 1 we
can derive a much stronger lower bound for edge colorings of
bipartite graphs satisfying the following constraint:
Definition 1. Call an edge coloring of a bipartite graph rich if
for each pair

〈left vertex x, right vertex y〉

there is at most one color a touching both x and y (the latter
means that there is an edge with color a incident to x and an
edge, maybe a different one, with color a incident to y).

From Theorem 1 we can derive the following bound for rich
colorings of bipartite graphs:

Corollary 1. Assume that the degree of each left vertex in a
given bipartite graph is at least L and the degree of each right
vertex is at least R. Then the number of colors in every rich
edge coloring of the graph is at least LR.

Proof: Consider the uniform distribution on the set of
edges of the graph. Denote by (A,X, Y ) the following triple
of jointly distributed random variables:
X = [the left end of the edge],
Y = [the right end of the edge],
A = [the color of the edge].

As the coloring is rich, the triple (A,X, Y ) satisfies (2): if
both events [A = a,X = x] and [A = a, Y = y] have positive
probabilities, then both x and y are touched by a, and hence
such a is unique. Therefore by Theorem 1 we have H(A|X)+
H(A|Y ) 6 H(A).

By construction, the distribution on the edges is uniform.
Hence, for each vertex x, the conditional distribution of edges
incident to this x is also uniform. All edges incident to one
and the same vertex must have different colors. So for every
fixed vertex x, all colors touching this x are equiprobable.
In other words, conditional on X = x, the value of A is
uniformly distributed on the set of colors touching x. Thus,
H(A|X) > logL. Similarly, we have H(A|Y ) > logR. By
Theorem 1 we have H(A) > logL+logR. It follows that the
range of A is at least LR.
Remark 1. In fact this proof gives a stronger result. Let us
call by the left and the right degrees of an edge (in a bipartite
graph) the degrees of its left and right ends. Denote by L̃ and
R̃ the geometric means of the left and the right degrees of



3

the graph’s edges. That is, if the degrees of the vertices in
the left part of the graph are l1, . . . , ln and the degrees of the
vertices in right part of the graph are r1, . . . , rm (l1+. . .+ln =
r1 + · · ·+ rm = e, where e is the number of edges), then

L̃ :=
(
ll11 · · · llnn

)1/e
, R̃ :=

(
rr11 · · · rrmm

)1/e
.

The proof of Corollary 1 explained above implies that the
number of colors in every rich edge coloring of the graph is
at least L̃R̃. Notice that L̃ > L and R̃ > R (these inequalities
become equalities, if and only if the graph is uniform on the
left or on the right respectively).

In what follows we exhibit three examples of rich colorings.
The first two examples are pretty trivial; in the third example,
Corollary 1 provides a non-trivial lower bound.
Example 1. For some bipartite graphs the lower bound LR
proven in Corollary 1 is tight. Consider the simplest example:
let KR,L be the complete bipartite graph with R left and L
right vertices so that the degree of each left vertex is exactly
L and the degree of each right vertex is exactly R (see in
Fig. 1 an example for R = 3 and L = 4). This graph has
LR edges. We may color them into LR colors, each edge
having its unique color. This coloring is rich, as for each
pair 〈left vertex x, right vertex y〉 only the color of that edge
touches both x and y.

Fig. 1. Complete bipartite graph K3,4.

For this example it is easy to compute directly the minimum
number of colors in a rich coloring. Indeed, no different edges
(x1, y1), (x2, y2) can share a color, as in that case the pair
x1, y2 would violate the condition: the color of the edge
(x1, y2) also touches both x1 and y2 and is different from
the shared color of (x1, y1), (x2, y2).
Example 2. In general, the lower bound from Corollary 1 is
not optimal. To construct the simplest example, consider the
complete bipartite graph K3,3 and delete from this graph three
edges forming a perfect matching, see Fig. 2. In this graph the

Fig. 2. Complete bipartite graph K3,3 minus a perfect matching.

degree of each vertex is 2, so Corollary 1 claims that every
rich coloring has at least 2 · 2 = 4 colors. However, it is easy

to verify that the optimal rich coloring has 5 colors: two edges
(e.g., the pair of edges shown in bold in Fig. 2) may share a
color, while each of the remaining edge must have a unique
color.

The next example is less obvious and exhibits a series of rich
colorings for which Corollary 1 provides a non-trivial lower
bound.
Example 3. Assume that a finite family F of pair-wise disjoint
squares inside the square [0; 1)2 in the Euclidean plane is
given, each square having the form [a; b) × [c, d). Assume
that all vertices of those squares have rational coordinates 2.
Assume further for each x ∈ [0; 1) there are at least L squares
in F whose first projection includes x and similarly for each
y ∈ [0; 1) there are at least R squares in F whose second
projection includes y (see Fig. 3). Then |F | > LR.

Fig. 3. The square is partitioned into 10 disjoint squares so that each vertical
or horizontal line intersects 3 squares.

Proof: Obviously, there is a natural N such that each of
the given squares has the form [i/N ; j/N) × [k/N ; l/N) for
integer i, j, k, l 6 N . Consider the graph whose left and right
nodes are rational numbers of the form i/N with 0 6 i <
N . For each given square [a; b)× [c, d) consider the diagonal
{(a+t, c+t)|0 6 t < b−a = c−d}, see Fig 4. The edges of the
graph are those pairs (x, y) of nodes that lie on such diagonals.
The edges of the resulting graph can be naturally colored into
|F | colors: the edges obtained from each diagonal are colored
in a unique color. This coloring is rich: if the diagonal of a
square has a point of the form (x, ∗) and a point of the form
(∗, y), then that square includes the point (x, y) and there is at
most one such square (the squares are disjoint). The left degree
of the graph is at least L. Indeed, for each x0 ∈ [0; 1) of the
form i/N there are at least L squares whose first projection
includes x0 (see the dashed vertical in Fig 4). For each such
square [a; b)× [c, d) its diagonal intersects the vertical segment
{(x0, y)|0 6 y < 1}, say, in the point (x0, y0). Since both a, c
have the form i/N , the number y0 = c+(x0−a) also has this
form and hence (x0, y0) is an edge of the graph. Similarly, the
right degree of the graph is at least R (see the dashed horizontal
line in Fig 4) and by Corollary 1 we have |F | > LR.

Historical remark: The study of edge colorings with addi-
tional constraints is by all means not new, see, e.g., strong
edge colorings [5], complete edge colorings [3], the Thue
number of a graph [13], etc. Some versions of constraint edge

2This assumption is added for technical simplicity and may be dropped.
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Fig. 4. Diagonals of the squares of the partition (points with rational
coordinates (i/N, j/N) for N = 12 and the corresponding bipartite graph).

coloring have found direct applications in Information theory
(e.g., [7], [15]). The problem concerned in Corollary 1 looks
quite natural in the context of the variety of edge coloring
problems investigated in graph theory, though we are not aware
of any earlier studies or applications of this specific variant of
edge coloring.

B. A lower bound for the biclique cover number of bipartite
graphs
Definition 2. For any bipartite graph G = (V1, V2, E) (with
the set of vertices V1 ∪ V2 and the set of edges E ⊂ V1 × V2)
its biclique cover number bcc(G) is defined as the minimal
number of bicliques (complete bipartite subgraphs) that cover
all edges of G.

Biclique coverings play an important role in communication
complexity. Specifically, the non-deterministic communication
complexity (see [14]) of a predicate

P : U × U → {0, 1}

can be defined as log bcc(G) for the bipartite graph G =
(V1, V2, E), where V1 = V2 = U , and E is the set of all
pairs (x, y) ∈ U × U such that P (x, y) = 1.

Corollary 2. Assume that the edges of a bipartite graph G =
(V1, V2, E) are colored in such a way that
(*) if edges (x, y′) and (x′, y) of the graph have the same

color a, and the vertices x and y, as well as vertices x′
and y′, are also connected by edges, then the latter two
edges also have color a.

Assume further that a probability distribution over the
edges of the graph is given. Denote by (X,Y,A) the random
variables where
• X = [the left end of the edge],
• Y = [the right end of the edge],
• A = [the color of the edge].

Then bcc(G) > 2
1
2 (H(A|X)+H(A|Y )−H(A)).

Proof: Assume that this graph G can be covered by t
bicliques C1, . . . , Ct. Extend the distribution (X,Y,A) and
add another random variable: we define Z as the index of a
biclique Ci that covers the edge (X,Y ). (If an edge belongs
to several bicliques Ci, then we choose any of them.) Notice
that Z ranges over {1, . . . , t}, so H(Z) 6 log t.

The crucial point is that for a fixed value i of Z the con-
dition (2) is satisfied. Indeed, assume that both p(a, x|Z = i)
and p(a, y|Z = i) are positive. Then the biclique Ci has edges
(x, y′) and (x′, y), both with color a. By property (∗) the color
of the edge (x, y) also equals a and hence such a is unique. By
Theorem 1 for each conditional distribution (A,X, Y )|Z = i
the inequality (1) holds. Hence we get

H(A|X,Z) +H(A|Y, Z) 6 H(A|Z).

It follows that

H(A|X)−H(Z) +H(A|Y )−H(Z) 6 H(A).

Thus, we obtain t > 2H(Z) > 2
1
2 [H(A|X)+H(A|Y )−H(A)].

Example 4. Let us apply this corollary to a specific bipar-
tite graph. Consider the bipartite Kneser graph KGn,k =
(V1, V2, E), where both parts V1 and V2 consist of k-elements
subsets of {1, . . . , n}, and the set of edges E ⊂ V1 × V2
consists of all pairs of disjoint sets. Let us color the edge
(x, y) in color x ∪ y and consider the uniform probability
distribution over the edges of this graph. The condition (∗)
is fulfilled. Indeed, assume we are given three pairs of disjoint
k-element subsets: (x, y), (x, y′) and (x′, y). Assume further
that x ∪ y′ = x′ ∪ y = a. Then x = x′ and y = y′ and hence
x ∪ y = a as well. Hence

bcc(KGn,k) > 2
1
2 [H(A|X)+H(A|Y )−H(A)].

We have
(
n
2k

)
equiprobable colors and hence H(A) =

log2

(
n
2k

)
. On the other hand, H(A|X) = H(A|Y ) =

log2

(
n−k
k

)
. Thus

bcc(KGn,k) >

√(
n− k
k

)2

/

(
n

2k

)
.
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If n � k then
(
n−k
k

)2
/
(
n
2k

)
is close to

(
2k
k

)
≈ 22k and we

obtain a lower bound about 2k for bcc(KGn,k). On the other
hand, it is known that bcc(KGn,k) 6 2O(k+log logn) (see [14,
Section 2.3]), so in the case Ω(log log n) 6 k � n these lower
and upper bounds are pretty close.

The proven bound in itself is of no interest; the simple and
standard fooling set technique (see [14]) proves for this graph
the bound bcc(KGn,k) >

(
2k
k

)
that holds for all n > 2k.

However, this simple example illustrates the connection be-
tween biclique cover and conditional information inequalities.
It remains unknown whether a similar technique can surpass
the fooling set method for other examples of graphs.

Historical remark: In graph theory the minimum number
of bicliques (complete bipartite subgraphs) needed to cover
all edges of a given graph is known as the biclique cover
number or the bipartite dimension of a graph. The problem of
computing the bipartite dimension appears in different areas of
computer science. In particular, the notions of bipartite parti-
tion and bipartite cover play the central role in communication
complexity, [14].

The problem of determining the bipartite dimension is NP-
hard even for bipartite graphs, [4]. A good approximation or
a nontrivial lower bound for the bipartite dimension of some
particular classes of graphs may imply substantial progress in
various problems of computational complexity, see [14], [16],
[19], [20]. In Corollary 2 we proposed a new technique of
lower bounds for the bipartite dimension. Establishing formal
relations between our method and previous approaches to
biclique cover remains an open problem.

V. A GENERALIZATION OF A CONDITIONAL INEQUALITY
FROM [21]

In this section we show that Theorem 1 implies some condi-
tional version of Ingleton’s inequality for entropies. So-called
Ingleton’s inequality was originally formulated and proven for
ranks of linear subspaces, [2]. It turns out that a counterpart of
this inequality reformulated in terms of Shannon’s entropy (for
random variables) has many nontrivial applications. Though
in general this inequality is not valid for entropies (see [10]),
it holds for distributions that satisfy some special properties
(e.g., for random variables that enjoy the property of extracting
the mutual information, or for variables with some properties
of independence, see [6], [9], [12], [17], [18]). In particular,
in [21] it was shown that Ingleton’s inequality for entropies
holds for all distributions where the entropies satisfy some
linear constraints:

Theorem 2 ([21]). If random variables X,Y,A,B satisfy the
the constraints

I(X : Y |A) = H(A|X,Y ) = 0, (4)

then Ingleton’s inequality

I(A : B) 6 I(A : B|X) + I(A : B|Y ) + I(X : Y ) (5)

holds for this distribution.

A noteworthy fact is that this result cannot be obtained
as a direct implication of any unconditional linear inequality

for Shannon’s entropy. More precisely, whatever pair of reals
λ1, λ2 we take, the inequality

I(A : B) 6 I(A : B|X) + I(A : B|Y ) + I(X : Y )+

+λ1I(X : Y |A) + λ2H(A|X,Y )

does not hold for some distribution, see [25].
We claim that Ingleton’s inequality holds also under condi-

tion (2), which is weaker than (4). Moreover, even a stronger
inequality than Ingleton’s inequality (namely the inequality (6)
below), holds under condition (2).

Theorem 3. (i) Ingleton’s inequality (5) follows from the
inequality

H(A|X,B) +H(A|Y,B) 6 H(A|B). (6)

(ii) Inequality (6) holds for all random variables A,B,X, Y
satisfying condition (2).

(iii) Condition (2) is implied by condition (4).

In brief, Theorem 3 states that (4) ⇒ (2) ⇒ (6) ⇒
(5). The main novelty is the middle implication (2) ⇒ (6),
while the implications (4) ⇒ (2) and (6) ⇒ (5) are almost
straightforward (see the proof below) and the implication (4)
⇒ (5) was known (Theorem 2).

Proof: (i) It is easy to verify that Ingleton’s inequality (5)
can be equivalently rewritten as

H(A|X,B) +H(A|Y,B) 6 H(A|B) + I(X : Y |A)

+H(A|X,Y ).
(7)

and hence follows from (6). Notice that under the con-
straints (4), Ingleton’s inequality is equivalent to (6).

(ii) Note that inequality (6) is a relativized version of (1) (the
word relativization here means that we insert a new condition
in all entropy expressions). This similarity between inequal-
ities (1) and (6) suggests that Theorem 2 can be deduced
from Theorem 1. The key observation is that condition (2)
is “relativizable”: property (2) remains true if we restrict the
initial probabilistic space to some subspace.

Lemma. If a tuple of random variables (A,X, Y ) satisfies
(2), then for each event E having positive probability the
conditional random variables of (A,X, Y )|E satisfy (2).

Proof: Assume that the four probabilities

Pr[X = x, A = a |E ],Pr[Y = y, A = a |E ],

Pr[X = x, A = a′|E ],Pr[Y = y, A = a′|E ]

are positive. Then the unconditional probability of each of
these events is positive as well and hence a = a′ by (2).

Now we can show that (6) follows from condition (2).
Indeed, for every possible value b of B the lemma guarantees
that (2) remains valid conditional on the event B = b. By
Theorem 1 this implies

H(A|X,B = b) +H(A|Y,B = b) 6 H(A|B = b),

and taking the average over all values b we get (6).
(iii) Inequality I(X : Y |A) = 0 means that

p(a, x, y)p(a) = p(a, x)p(a, y)
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for all triples a, x, y. Thus it implies that for each triple a, x, y
of values of A,X, Y , if both probabilities p(a, x) and p(a, y)
are positive, then p(a, x, y) is also positive. Hence, if for some
a, a′, x, y all the four probabilities

p(a, x), p(a, y), p(a′, x), p(a′, y)

are positive (the assumption of (2)), then it follows that the
probabilities p(a, x, y) and p(a′, x, y) must be also positive.

Now we employ the condition H(A|X,Y ) = 0 (which
means that the value of A is a deterministic function of
(X,Y )). If both probabilities p(a, x, y) and p(a′, x, y) are
positive, then a = a′, and we obtain the conclusion of (2).

Note that in general inequality (6) is stronger than Ingleton’s
inequality (5). For instance, let B be constant, let X,Y be
independent uniformly distributed random bits, and let A =
X ⊕ Y . Then inequality (6) specializes to 1 + 1 6 1 and
hence is wrong, while Ingleton’s inequality (5) specializes to
0 6 0 + 0 + 0 (or to 1 + 1 6 1 + 1 + 0, if written in the
form (7)) and hence is true.

Note also that in general condition (2) is weaker than
condition (4). For instance, let A be constant and let X,Y
be any dependent random variables.
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