On the Power of PP

Nikolai K.Vereshchagin The Institute of New Technologies Kirovogradskaja 11, Moscow 113587, Russia e-mail: amuchnik@globlab.msk.su

Abstract

It is proved that $\mathbf{MA} \subset \mathbf{PP}$ (relativizable) and that $\mathbf{AM}^A \cap \mathbf{co} \cdot \mathbf{AM}^A \not\subset \mathbf{PP}^A$ for some oracle A.

1 Introduction

Recently two interesting results about the class **PP** were obtained. We mean the result of S.Toda [1] that polynomial hierarchy **PH** is polynomially Turing reducible to **PP** and the result that **PP** is closed under polynomial truth table reductions (see [2] and [3]). These results make more interesting to study **PP**. Another reason to study **PP** is that this class has the following interpretation. Random input r of the probabilistic machine M that recognizes a language L can be regarded as a voter and the output M(x, r) of M on the input word x and random input r can be regarded as the opinion of voter r about whether x is in L. From this point of view **PP** is the class of all languages L such that membership of x in L can be determined via election with $2^{poly(|x|)}$ voters, every voter being polynomial time bounded.

In this paper we prove one (simple) positive theorem about \mathbf{PP} and one negative theorem:

Theorem 1. $MA \subset PP$.

Theorem 2. $\mathbf{AM}^A \cap \mathbf{co-AM}^A \not\subset \mathbf{PP}^A$ for some oracle A.

Theorem 1 is relativizable. Theorem 2 shows that theorem 1 cannot be strengthened to relativezable inclusion $\mathbf{AM} \subset \mathbf{PP}$ (remember that $\mathbf{MA} \subset \mathbf{AM}$ [4]). Another meaning of theorem 2 is that Toda's result that PH is Turing reducible to \mathbf{PP} cannot be strengthened to relativizable inclusion

 $\mathbf{PH} \subset \mathbf{PP}$ because $\mathbf{AM} \subset \Pi_2$ [4] (note that Toda's proof is relativizable). From theorems 1 and 2 we can deduce that $\mathbf{AM}^A \cap \mathbf{co} \cdot \mathbf{AM}^A \not\subset \mathbf{MA}^A$ for some oracle A, but the latter result is easier than theorem 2.

2 Definitions

We'll consider languages over the binary alphabet $\mathbf{B} = \{0, 1\}$. The set of all binary words of length n is denoted by \mathbf{B} . Functions with binary values are called predicates. Instead of P(x) = 1 where P is a predicate we'll write simply P(x). All Turing machines output 0, 1.

Definition 1. A language L belongs to **PP** iff there is a polynomial time probabilistic Turing machine M such that $x \in L \Leftrightarrow \operatorname{Prob}[M(x, r) = 1] > 1/2$ where the probability is taken over the uniform distribution in the set of random inputs r of M.

Remark. We can easily prove that in definition 1 the threshold 1/2 may be replaced with any other constant or with any rational number of the form $a(x)/2^{s(|x|)}$ where s is a polynomial and $a: \mathbf{B}^* \to \mathbf{N}$ is polynomially computable function (integers are written in binary notation).

Definition 2. $L \in \mathbf{MA}$ iff there are a polynomial p and polynomially computable predicate Q(x, r, s) such that

$$x \in L \Rightarrow \exists s \in \mathbf{B}^{p(|x|)} \operatorname{Prob}_{r}[Q(x, r, s)] > 2/3$$
$$x \notin L \Rightarrow \forall s \in \mathbf{B}^{p(|x|)} \operatorname{Prob}_{r}[Q(x, r, s)] < 1/3,$$

where probability is taken over uniform distribution in $\mathbf{B}^{p(|x|)}$.

Definition 3. $L \in \mathbf{AM}$ iff there are a polynomial p and polynomial computable predicate Q(x, r, s) such that

$$x \in L \Rightarrow \operatorname{Prob}[\exists s \in \mathbf{B}^{p(|x|)}Q(x,r,s)] > 2/3$$
$$x \notin L \Rightarrow \operatorname{Prob}[\exists s \in \mathbf{B}^{p(|x|)}Q(x,r,s)] < 1/3$$

where probability is taken over uniform distribution in $r \in \mathbf{B}^{p(|x|)}$.

Theorem [4]. $MA \subset AM$.

3 Results

Theorem 1. $MA \subset PP$.

Proof. Let $L \in \mathbf{MA}$ and let p and Q are correspondingly polynomial and predicate from definition 2. Using standard amplification we can construct a new polynomial p_1 and a new polynomially computable predicate Q_1 such that

$$x \in L \Rightarrow \exists s \in \mathbf{B}^{p(|x|)} \operatorname{Prob}[Q_1(x, r, s)] > 1 - 4^{-p(|x|)}$$
$$x \notin L \Rightarrow \forall s \in \mathbf{B}^{p(|x|)} \operatorname{Prob}[Q_1(x, r, s)] > 4^{-p(|x|)}$$

where probability is taken over the uniform distribution in $r \in \mathbf{B}^{p_1(|x|)}$. Consider now the uniform distribution on pairs $\langle r, s \rangle \in \mathbf{B}^{p(|x|)+p_1(x)}$. We have $x \in L \Rightarrow$

$$\operatorname{Prob}[Q_1(x,r,s)] > 2^{-p(|x|)}(1 - 4^{-p(|x|)}) > 4^{-p(|x|)}$$

and

$$x \notin L \Rightarrow \operatorname{Prob}[Q_1(x, r, s)] < 4^{-p(|x|)}.$$

Using the Remark we get $L \in \mathbf{PP}$.

Theorem 2. There is an oracle A such that

$$\mathbf{A}\mathbf{M}^A \cap \mathbf{co} \mathbf{A}\mathbf{M}^A \not\subset \mathbf{P}\mathbf{P}^A$$
.

Proof. For simplicity of notation we'll construct an oracle A such that $\mathbf{A}\mathbf{M}^A \not\subset \mathbf{P}\mathbf{P}^A$. The proof can be easily transformed into the proof of the theorem.

Let A be a language and let $n \in \mathbf{N}$. We will consider the value of A on the words of length 2n as the matrix of order $2^n \times 2^n$ with coefficients 0, 1. Denote this matrix by A_n . Call A_n 1-goof iff > 2/3 rows of A_n contain at least one 1 and call A_n 0-good iff < 1/3 rows of A_n contain at least one 1. Call A_n good if it is 1-good or 0-good. Associate with any oracle A the language $L(A) = \{1^n \mid A_n \text{ is 1-good}\}$. We'll construct an oracle A such that A_n is good for all $n \in \mathbf{N}$ and $L(A) \notin \mathbf{PP}^A$. From the former condition we can easy deduce that $L(A) \in \mathbf{AM}^A$.

To ensure $L(A) \notin \mathbf{PP}^A$ let us enumerate all polynomial probabilistic machines and denote *i*-th machine by PP_i . Define for beginning A in such a way that A_n is good for all $n \in \mathbf{N}$. We will perform steps with numbers 0, 1, 2, On the *i*-th step we'll ensure that L(A) differs from the language recognized by PP_i^A . To this end we will change the value of A on finite number of words in such a way that for some $n \in \mathbf{N}$ holds

$$1^{n} \in L(A) \not\Leftrightarrow \operatorname{Prob}[PP_{i}^{A}(1^{n}, r) = 1] > 1/2$$

$$(1)$$

After changing we will fix the value of A on all words which the truth value of (1) depends on. This means that on later steps we will not change the value of A on these words.

Let us describe *i*-th step. Choose *n* such that no value of *A* (the oracle constructed on (i-1)th step) on words with length 2n is fixed and sufficiently large (how large must be *n* we'll see in the end of the proof). Denote by M_n the set of all 0–1-matrices of order $2^n \times 2^n$. If $B \in M_n$ then denote by A[B] the oracle obtained from *A* by replacing A_n with *B*. Let us prove that there is a good $B \in M_n$ such that for A[B] holds (1). Suppose the contrary: for all good $B \in M_n$

$$B \text{ is 1-good } \Leftrightarrow \operatorname{Prob}[PP_i^{A[B]}(1^n, r) = 1] > 1/2$$

$$\tag{2}$$

We'll deduce a contradiction. Denote for brevity $PP_i^{A[B]}(1^n, r)$ by P(B, r).

We'll construct two probability distributions μ , ν on M_n such that the matrix B taken at random with respect to μ with high probability is 1-good and the matrix B taken at random with respect to ν with high probability is 0-good. More precisely μ and ν will satisfy

$$\operatorname{Prob}_{\mu}[B \text{ is } 1\text{-}\mathrm{good}] > 1 - 2^{-h(n)}$$
 (3)

$$\operatorname{Prob}_{\nu}[B \text{ is } 0\text{-good}] > 1 - 2^{-h(n)} \tag{4}$$

where h(n) grows superpolynomially.

Let us denote by \mathbf{E}_{μ} , \mathbf{E}_{ν} , and \mathbf{E} correspondingly the average with respect to distributions μ , ν and uniform distribution in the set of r's. Let us prove that (3) and (4) yield

$$\mathbf{E}_{\mu}\mathbf{E}P(B,r) > \mathbf{E}_{\nu}\mathbf{E}P(B,r) \tag{5}$$

Indeed if μ will be concentrated only on 1-good matrices, we would have $\mathbf{E}_{\mu}\mathbf{E}P(B,r) > \mathbf{E}_{\mu}\frac{1}{2} = \frac{1}{2}$ and more precisely $\mathbf{E}_{\mu}\mathbf{E}P(B,r) \geq \frac{1}{2} + 2^{-poly(n)}$. If ν will be concentrated only on 0-good matrices we would have $\mathbf{E}_{\nu}\mathbf{E}P(B,r) < \frac{1}{2}$. As the gap $2^{-poly(n)}$ is less than $2^{-h(n)}$ we see that for sufficiently large n, (5) follows from (3) and (4). On the other hand, μ and ν will be such that

$$\mathbf{E}_{\mu}P(B,r) = \mathbf{E}_{\nu}P(B,r) \text{ for all } r.$$
(6)

Evidently this contradicts (5).

Distribution μ and ν will be constructed as follows. Let σ be some probability distribution in the segment [0, 1]. Let us associate with σ a probability distribution in M_n denoted by $\alpha(\sigma)$. A random matrix B with respect to $\alpha(\sigma)$ is generated as follows. Pick independently random p_1, \ldots, p_{2^n} in [0, 1] with respect to σ . Then for each $j \leq 2^n$ take *j*-th row of B as the sequence of 2^n Bernoulli tests with probability of 1 equal to p_j . More formally, for any matrix $(c_{jl}) \in M_n$

$$\operatorname{Prob}_{\alpha(\sigma)}[B = (c_{jl})] = \prod_{j=1}^{2^n} (\int_0^1 (\prod_{l=1}^{2^n} x_j^{c_{jl}}) \, d\sigma(x_j))$$

where $x^0 = 1 - x$, $x^1 = x$.

Let us denote by k the maximal number of queries which machine PP_i makes to oracle on inputs of the form $1^n, r$. Note that $k \leq poly(n)$. Consider the first k moments of σ :

$$m_1(\sigma) = \int_0^1 x \, d\sigma(x), \ m_2(\sigma) = \int_0^1 x^2 \, d\sigma(x), \dots,$$
$$m_k(\sigma) = \int_0^1 x^k \, d\sigma(x).$$

We claim that for all r, $\mathbf{E}_{\alpha(\sigma)}P(B,r)$ is a polynomial in $m_1(\sigma)$, $m_2(\sigma)$, $\ldots, m_k(\sigma)$ (the coefficients of this polynomial depend only on PP_i , n and r).

Let us prove this claim. Remember that $P(B, r) = PP_i^{A[B]}(1^n, r)$. Let us fix some $B \in M_n$ and simulate the work of PP_i on $1^n, r$ with oracle A[B]. Let us write down the questions to B (i.e. the questions of length 2n to the oracle) made during this work and also the answers. Denote by u_1, \ldots, u_k the questions and by b_1, \ldots, b_k the answers (thus $u_1, \ldots, u_k \in \mathbf{B}^{2n}$, $b_1, \ldots, b_k \in \mathbf{B}$). Let us call the sequence $(u_1, \ldots, u_k, b_1, \ldots, b_k)$ the protocol on B and denote it by Prot(B). Denote also

$$Prot = \{Prot(B) \mid B \in M_n, P(B, r) = 1\}.$$

Obviously

$$Prot(B_1) = Prot(B_2) \Rightarrow P(B_1, r) = P(B_2, r)$$

Therefore we have

$$\mathbf{E}_{\alpha(\sigma)}P(B,r) = \sum_{v \in Prot} \operatorname{Prob}_{\alpha(\sigma)}[Prot(B) = v].$$

Thus it suffices to prove that for every $v \in Prot$, $\operatorname{Prob}_{\alpha(\sigma)}[Prot(B) = v]$ is a polynomial in $m_1(\sigma), m_2(\sigma), \ldots, m_k(\sigma)$. Let us fix some $v \in Prot$, $v = (u_1, \ldots, u_k, b_1, \ldots, b_k)$. Evidently

$$\operatorname{Prob}_{\alpha(\sigma)}[\operatorname{Prot}(B) = v] =$$
$$= \operatorname{Prob}_{\alpha(\sigma)}[B(u_i) = b_i, i = 1, \dots, k].$$

Remember that each u_i is considered to be a pair of numbers of a row and a column in B, denote the number of the row by l_i . Denote for each $s \leq 2^n$ by c_s the number of different u_i , i = 1, ..., k such that $l_i = s_i$ and $b_i = 1$ and by d_s the number of different u_i , i = 1, ..., k such that $l_i = s_i$ and $b_i = 0$. Then

$$\operatorname{Prob}_{\alpha(\sigma)}[Prot(B) = v] = \prod_{s=1}^{2^n} \int_0^1 x^{c_s} (1-x)^{d_s} \, d\sigma(x).$$

Evidently, $\int_0^1 x^{c_s} (1-x)^{d_s} d\sigma(x)$ is a linear combination of $m_r(\sigma) = \int_0^1 x^r d\sigma(x)$, $r = 0, 1, \ldots, k$ (because $c_s + d_s \leq k$). Thus the claim is proved.

Therefore if we take two probability distributions σ and τ in [0, 1] such that

$$m_i(\sigma) = m_i(\tau) \text{ for } i = 1, 2, \dots, k,$$
(7)

and take $\mu = \alpha(\sigma)$ and $\nu = \alpha(\tau)$ we will get (6). In order to satisfy (3) we'll take σ such that

$$\operatorname{Prob}_{\sigma}[p \ge 2^{-n+4}] \ge \frac{4}{5} \tag{8}$$

Let us prove that (8) implies (3). Suppose that σ satisfies (8). Let *B* be a random matrix with respect to $\alpha(\sigma)$. Denote by *q* the probability that a fixed row of *B* has only zeros. Obviously, $q \leq \frac{1}{5} + \frac{4}{5}(1-2^{-n+4})^{2^n} \approx \frac{1}{5} + \frac{4}{5}e^{-16} < \frac{1}{4}$ (for large *n*). From the Law of large numbers it follows that with probability $1 - 2^{-const \cdot 2^n}$ the frequence of nonzero rows in *B* is greater than 2/3. In order to satisfy (4) we will take $\nu = \alpha(\tau)$ such that

$$\operatorname{Prob}_{\tau}[p=0] \ge \frac{3}{4}.\tag{9}$$

Let us prove that (9) implies (4). Let τ satisfy (9) and let *B* be a random matrix with respect to $\alpha(\tau)$. Then the probability *q* that a fixed row of *B* has only zeros is greater than 3/4. Therefore we can reason as in above case. Thus it remains to prove the following lemma.

Lemma. Let p(n) be a polynomial. Then for all sufficiently large n there are probability distributions σ and τ in [0, 1] satisfying the conditions (8), (9) and (7) for k = p(n).

Proof. We'll define σ explicitly and τ implicitly by using a criterion on the existence of a measure in [0, 1] with given moments (a measure differs from a probability distribution with that a measure of entire segment [0, 1] can be different from 1; thus the probability distribution can be defined as any measure μ such that $\mu([0, 1]) = \int_0^1 1 \cdot d\mu(x) = 1$).

measure μ such that $\mu([0, 1]) = \int_0^1 1 \cdot d\mu(x) = 1$). Let $m = (m_0, m_1, \dots, m_k)$ be a sequence of real numbers. Let $a(x) = \sum_{i=0}^k a_i x^i$ be a polynomial of degree $\leq k$. Define (m, a(x)) to be equal to $m_0 a_0 + m_1 a_1 + \dots + m_k a_k$. The following theorem is due to M.Riesz. In paper [5] this theorem is proved for the infinite sequences of moments and measures in the set of reals. Riesz' proof is good also in our case. See also [6] (and [7] in Russian).

Riesz' theorem. Two following conditions are equivalent:

- (i) There is a measure μ in [0,1] such that for all $i \in \{0,1,\ldots,k\}$, $\int_0^1 x^i d\mu(x) = m_i.$
- (ii) For all polynomials a(x) of degree ≤ k, nonnegative on [0, 1], it holds (m, a(x)) ≥ 0.

If k is even then (ii) is equivalent to the condition

(iii) For all polynomials b(x), c(x), $\deg b(x) \le k/2$, $\deg c(x) \le k/2 - 1$, it holds $(m, b(x)^2) \ge 0$, $(m, x(1-x)c(x)^2) \ge 0$.

The implication (ii) \Rightarrow (iii) is obvious. The implication (i) \Rightarrow (ii) is simple and we'll use its proof in the sequel. Let us prove it. Assume that (i) is true and let μ be a measure satisfying (i). Let $a(x) = \sum_{i=0}^{k} a_i x^i$ be a polynomial nonnegative on [0, 1]. Then

$$(m, a(x)) = \sum_{i=0}^{k} a_i m_i = \sum_{i=0}^{k} a_i \int_0^1 x^i d\mu(x)$$
$$= \int_0^1 a(x) d\mu(x) \ge 0.$$

For the seek of completeness we'll also prove that $(iii) \Rightarrow (ii)$ and $(ii) \Rightarrow (i)$ in the Appendix.

Our plan is as follows. We'll define a probability distribution σ on [0, 1] such that

$$\int_{0}^{1} b(x)^{2} d\sigma(x) \ge \frac{3}{4} b(0)^{2} \text{ for all polynomials}$$
(10)
$$b(x) \text{ with degree } \le k/2.$$

Then we'll define the sequence $m = (m_0, \ldots, m_k)$ by equalities $m_0 = 1/4$, $m_1 = m_1(\sigma), \ldots, m_k = m_k(\sigma)$.

This sequence *m* satisfies (iii) because if b(x) has degree $\leq \frac{k}{2}$ then $(m, b(x)^2) = \int_0^1 b(x)^2 d\sigma(x) - \frac{3}{4}b(0)^2 \geq 0$ (because $m_0 = \frac{1}{4} = m_0(\sigma) - \frac{3}{4}$) and if c(x) has degree $\leq \frac{k}{2} - 1$ then

$$(m, x(1-x)c(x)^2) = \int_0^1 x(1-x)c(x)^2 \, d\sigma(x) \ge 0$$

(because the polynomial $x(1-x)c(x)^2$ has no constant term).

By Riesz' theorem there is a measure μ in [0,1] such that $m_0(\mu) = \int_0^1 1 \, d\mu(x) = \frac{1}{4}$ and for all $i \in \{1, 2, ..., k\}, m_i(\mu) = \int_0^1 x^i \, d\mu(x) = \int_0^1 x^i \, d\sigma(x) = m_i(\sigma)$. Let $g_\mu(x)$ be distribution function of μ , i.e. $g_\mu(x) = \mu([0, x])$. Consider the function $f(x) = \frac{3}{4} + g_\mu(x)$. Then f(x) is the distribution function of some probability distribution τ in [0, 1].

Evidently τ satisfies the required conditions.

Thus it remains to construct σ such that (8) and (10) hold. Let us denote for brevity 2^{-n+4} by θ . Let us define σ by equalities $\operatorname{Prob}_{\sigma}[p = \theta] = 4/5$ and if $A \subset [0,1] \setminus \{\theta\}$ then $\operatorname{Prob}_{\sigma}[p \in A] = \frac{1}{5} \int_{x \in A} \rho(x) dx$ where $\rho(x) = \frac{c_1}{\sqrt{1-(1-2x)^2}}$ and c_1 is chosen in such a way that $\int_0^1 \rho(x) dx = 1$. In other words, σ is the probability distribution such that for all $A \subset [0,1]$ $\operatorname{Prob}_{\sigma}[p \in A] = \frac{4}{5}\chi_A(\theta) + \frac{1}{5}\int_0^1 \chi_A(x)\rho(x) dx$, where χ_A stands for the characteristic function of A.

Evidently (8) is true.

Let us prove (10). Let b(x) be a polynomial of degree $\leq k/2$. Then $\int_0^1 b(x)^2 d\sigma(x) = \frac{4}{5}b(\theta)^2 + \frac{1}{5}\int_0^1 b(x)^2\rho(x) dx$. We claim that either $\frac{4}{5}b(\theta)^2$ or $\frac{1}{5}\int_0^1 b(x)^2\rho(x) dx$ is greater than $\frac{3}{4}b(0)^2$ (for sufficiently large n). Indeed, assume that $\frac{1}{5}\int_0^1 b(x)^2\rho(x) dx \leq \frac{3}{4}b(0)^2$ that is

$$\int_{0}^{1} \left(\frac{b(x)}{b(0)}\right)^{2} \rho(x) \, dx \le \frac{15}{4}$$

Let us prove that $\frac{4}{5}b(\theta)^2 \geq \frac{3}{4}b(0)^2$. In fact, we'll prove that $\frac{b(\theta)}{b(0)}$ is exponentially close to 1. Let us substitute 1-2x = y for convenience. Then

we have

$$\int_{-1}^{1} d(y)^2 \gamma(y) \, dy \le \frac{15}{2},\tag{11}$$

where $d(y) = \frac{b(\frac{1-y}{2})}{b(0)}$, $\gamma(y) = \frac{c_1}{\sqrt{1-y^2}}$. Thus we have to prove that $d(1-2\theta)$ is close to d(1) = 1. Let m = k/2 and $T_0(x)$, $T_1(x)$, ..., $T_m(x)$ be (m+1) first Chebyshev's polynomials, i.e. $T_i(\cos t) = \cos it$ for all $t \in [0, \pi]$. The density $\rho(x)$ is chosen in such a way that $T_i(y)$ are orthogonal with density $\gamma(y)$, moreover they are almost orthonormal: $\int_{-1}^{1} T_i(y)T_j(y)\gamma(y) \, dy$ is equal to 0 if $i \neq j$, is equal to c_2 if $i = j \neq 0$ and is equal to c_3 if i = j = 0 where c_2 , c_3 are some positive constants. It is well known that the polynomials T_0, T_1, \ldots, T_m form a basis in the space of all polynomials of degree $\leq m$. Let d_0, \ldots, d_m be the coefficients of the polynomial d(y) in this basis. Then (11) yields that $\int_{-1}^{1} (\sum_{i=0}^{m} d_i T_i(y))^2 \gamma(y) \, dy = \sum_{i=0}^{m} d_i^2 \int_{-1}^{1} T_i(y)^2 \gamma(y) \, dy \leq \frac{15}{2}$. Hence for some constant c_4 we have $|d_0|, \ldots, |d_m| \leq c_4$. Let us deduce from this that $|d(1-2\theta) - d(1)| \leq \sum_{i=0}^{m} |d_i| ||T_i(1-\nu) - T_i(1)|$.

We claim that $|T_i(1-\nu) - T_i(1)| = i^2 \nu (1+o(1))$ as $i^2 \nu \to 0$. Suppose that this is already proved. Then for sufficiently large n we have $|d(1-\nu) - d(1)| \leq (m+1) \cdot c_4 \cdot m^2 \cdot \nu \cdot 2$. Therefore

$$|d(1-\nu) - d(1)| \le poly(n)2^{-n+4}.$$

Hence

$$\frac{b(\theta)}{b(0)} = d(1-\nu) \ge 1 - poly(n)2^{-n+4} \ge \frac{99}{100}$$

for sufficiently large n.

Thus it remains to prove that $T_i(1-\nu) - T_i(1) = i^2\nu(1+o(1))$ as $i^2\nu \to 0$. Let $\alpha \in [0, \pi]$ be defined by equality $\cos \alpha = 1-\nu$. Then $\nu = \frac{\alpha^2}{2}(1+o(1))$ as $\nu \to 0$. Hence

$$T_i(1-\nu) = T_i(\cos\alpha) = \cos i\alpha = 1 - \frac{\alpha^2 i^2}{2}(1+o(1)) = 1 - i^2\nu(1+o(1)) = T_i(1) - i^2\nu(1+o(1)).$$

This completes the proof of the lemma.

4 Appendix

1. Proof of implication (ii) \Rightarrow (i) in Riesz' theorem.

Assume that (ii) is true. Let us enumerate q_1, q_2, \ldots all rational numbers from [0, 1] and define $r_i(x)$ to be a function on [0, 1] such that $r_i(x)$ is equal to 0 if $0 \le x \le q_i$ and equal to 1 if $q_i < x \le 1$. Consider the linear space Lover **R** consisting of all functions f(x) on [0, 1] of the form

$$f(x) = \sum_{i \in I} s_i r_i(x) + a(x) \tag{12}$$

where I is a finite set of natural numbers, $s_i \in \mathbf{R}$ and a(x) is a polynomial with degree $\leq k$. Let K be the set of all $f \in L$ such that f is nonnegative on [0, 1].

Claim. There is a linear functional l defined on L such that l is nonnegative on K and l(a(x)) = (m, a(x)) for all polynomials a(x) of degree $\leq k$.

Proof of the claim. Let us define L_i to be the set of all functions f(x) of the form (12) with $I = \{1, 2, ..., i\}$ and define l_0 to be the functional defined on L_0 (the set of all polynomials of degree $\leq k$) as $l_0(a(x)) = (m, a(x))$. Then (ii) means that l_0 is nonnegative on $K \cap L_0$. Using the induction we'll prove that there is a sequence $l_0, l_1, l_2 \ldots$ of linear functionals such that l_i is defined on L_i , is nonnegative on $L_i \cap K$ and extends l_{i-1} . Then as l we can take the union of all $l_i, i \in \mathbf{N}$.

Let the functional l_i be already defined and nonnegative on $L_i \cap K$. Obviously we have to define the value of l_{i+1} only on $r_{i+1}(x)$. Suppose that this value is equal to v. One can easily verify that in this case l_{i+1} is nonnegative on $L_{i+1} \cap K$ iff v satisfies two conditions

> (a) v ≤ l_i(f(x)) for all f(x) ∈ L_i such that r_{i+1}(x) ≤ f(x) for all x ∈ [0, 1],
> (b) l_i(g(x)) ≤ v for all g(x) ∈ L_i such that r_{i+1}(x) ≥ g(x) for all x ∈ [0, 1].

Let us prove that there is $v \in \mathbf{R}$ satisfying (a) and (b). Let us denote

$$A = \{ l_i(f(x)) \mid f(x) \in L_i, \ \forall x \in [0,1] \ r_{i+1}(x) \le f(x) \}$$
$$B = \{ l_i(g(x)) \mid g(x) \in L_i, \ \forall x \in [0,1] \ g(x) \le r_{i+1}(x) \}$$

Evidently it is sufficient to prove that $A \neq \emptyset$, $B \neq \emptyset$ and $\forall v_1 \in A \ \forall v_2 \in B \ v_1 \geq v_2$.

As $r_{i+1}(x)$ is bounded and L_0 contains all constant functions, we have $A \neq \emptyset$, $B \neq \emptyset$. If $v_1 \in A$, $v_1 = l_i(f(x))$ and $v_2 \in B$, $v_2 = l_i(g(x))$, then $(f(x) - g(x)) \in K$ therefore $v_1 = l_i(f(x)) \ge l_i(g(x)) = v_2$.

The claim is proved.

Now let us consider the function g defined on [0, 1] by $g(x) = \sup\{l(r_i) \mid q_i \leq x, i \in \mathbf{N}\}$. We can easily prove that g(x) is monotone and continuous from the right $(\lim_{y \to x+0} g(y) = g(x))$. Hence g is the distribution function for some measure μ in [0, 1], i.e. there is a measure μ in [0, 1] such that $\mu([0, x]) = g(x)$ for all $x \in [0, 1]$. Obviously for all i, $\int_0^1 r_i(x) d\mu(x) = l(r_i(x))$. From this and the nonnegativeness of l on K we can easily deduce that $\int_0^1 x^i d\mu(x) = l(x^i) = m_i$ for all $i \in \{0, 1, \ldots, k\}$.

2. Proof of implication (iii) \Rightarrow (ii) in Riesz' theorem. This implication easily follows from the fact that for even k every polynomial of degree $\leq k$ which is nonnegative on [0, 1] has the form $a(x)^2 + x(1-x)b(x)^2$ where deg $a(x) \leq k/2$, deg $b(x) \leq k/2 - 1$. The latter fact in turn follows from the fact that each polynomial nonnegative on the set $\{y \in \mathbf{R} \mid y \geq 0\}$ has the form $p(y)^2 + yq(y)^2$. Indeed, suppose that the latter assertion is true and c(x)is a polynomial with degree $\leq k$ nonnegative on [0, 1]. Then the polynomial $c(\frac{y}{1+y})(1+y)^k$ is nonnegative on $[0, +\infty[$ therefore for some polynomials p(y)and q(y) it holds $c(\frac{y}{1+y})(1+y)^k = p(y)^2 + yq(y)^2$. Evidently deg $p \leq k/2$, deg $q \leq k/2 - 1$. Substituting $y = \frac{x}{1-x}$ we get $c(x) = p(\frac{x}{1-x})^2(1-x)^k + x(1-x)^{k-1}q(\frac{x}{1-x})^2$. Evidently

$$a(x) = p(\frac{x}{1-x})(1-x)^{k/2}$$
 and
 $b(x) = q(\frac{x}{1-x})(1-x)^{k/2-1}$

are polynomials of degrees correspondingly $\leq k/2$ and $\leq k/2 - 1$. Thus it remains to prove that every polynomial r(y) which is nonnegative on $[0, +\infty[$ has the form $r(y) = p(y)^2 + yq(y)^2$. Let us define P to be the set of all polynomials having such form.

Let r(y) is nonnegative on $[0, +\infty[$. Obviously, it is sufficient to prove two assertions: (a) r(y) can be represented as the product of polynomials from P and (b) if $r_1(y) \in P$ and $r_2(y) \in P$ then $r_1(y) \cdot r_2(y) \in P$. Let us decompose r(y) into the product of polynomials irreducible over **R**

$$r(y) = A \cdot (y + a_1)^{i_1} \cdots (y + a_n)^{i_n} \times$$

$$\times (y^2 + b_1 y + c_1)^{j_1} \cdots (y^2 + b_m y + c_m)^{j_m}$$

Evidently A > 0. Let us take arbitrary $k \le n$. Then $a_k \ge 0$ or i_k is even. If $a_k \ge 0$ then $y + a_k \in P$ as $y + a_k = (\sqrt{a_k})^2 + y \cdot 1^2$. If i_k is even then $(y + a_k)^{i_k} \in P$. Let us take arbitrary $k \le m$. Obviously $c_k > 0$ because $s(y) = y^2 + b_k y + c_k$ is irreducible. We have $s(y) = (y - \sqrt{c_k})^2 + y(2\sqrt{c_k} + b_k)$. Since s(y) is irreducible, we have $s(\sqrt{c_k}) = \sqrt{c_k}(2\sqrt{c_k} + b_k) \ge 0$ therefore $s(y) \in P$.

The assertion (b) follows from the equality

$$(p(y)^2 + yq(y)^2)(s(y)^2 + yt(y)^2) =$$

= $(p(y)s(y) - yq(y)t(y))^2 + y(p(y)t(y) + q(y)s(y))^2.$

Acknowledgments

The author is sincerely grateful to Vladimir Borisenko, Frederic Green, Lane Hemachandra, Andrey Muchnik, Alexander Razborov, Alexander Shen and Yuri Nikolaevich Tyurin.

References

- S.Toda, "On the computational power of **PP** and **#P**". Proc. of 30th Symp. on Found. of Comp. Sci. (1989), pp.514-519.
- [2] R.Beigel, N.Reingold and D.Spielman, "PP is closed under intersection". Proc. of 23rd ACM Symp. on Th. of Comp. (1991), pp.1-9.
- [3] L.Fortnow, N.Reingold. "PP is closed under truth table reductions." 6th IEEE Conf. on Structure in Complexity Theory, 1991, pp.13-15.
- [4] L.Babai, "Trading group theory for randomness". Proc. 17th ACM Symp. on Theory of Comp. (1985), pp.421-429.
- [5] M.Riesz. Sur le probléme des moments. Troisieme Note. Arkiv för mat., astr. och fys., 1923, v.17.
- [6] R.Riesz et B.Sz.-Nagy. Lecons d'analyse functionelle. Akademiai Kiado, Budapest 1972, 6th ed. (There are English and Russian translations.)
- [7] A.I.Akhiezer. The classical problem of moments and some related topics in calculus. Moscow, Fizmatgiz, 1961. (Russian.)