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Abstrat

It is proved that MA � PP (relativizable) and that AM

A

\o-AM

A

6� PP

A

for some orale A.

1 Introdution

Reently two interesting results about the lass PP were obtained. We mean

the result of S.Toda [1℄ that polynomial hierarhy PH is polynomially Tur-

ing reduible to PP and the result that PP is losed under polynomial truth

table redutions (see [2℄ and [3℄). These results make more interesting to

study PP. Another reason to study PP is that this lass has the following

interpretation. Random input r of the probabilisti mahine M that reog-

nizes a language L an be regarded as a voter and the output M(x; r) of M

on the input word x and random input r an be regarded as the opinion of

voter r about whether x is in L. From this point of view PP is the lass

of all languages L suh that membership of x in L an be determined via

eletion with 2

poly(jxj)

voters, every voter being polynomial time bounded.

In this paper we prove one (simple) positive theorem about PP and one

negative theorem:

Theorem 1. MA � PP.

Theorem 2. AM

A

\ o-AM

A

6� PP

A

for some orale A.

Theorem 1 is relativizable. Theorem 2 shows that theorem 1 annot be

strengthened to relativezable inlusion AM � PP (remember that MA �

AM [4℄). Another meaning of theorem 2 is that Toda's result that PH is

Turing reduible to PP annot be strengthened to relativizable inlusion



PH � PP beause AM � �

2

[4℄ (note that Toda's proof is relativizable).

From theorems 1 and 2 we an dedue that AM

A

\ o-AM

A

6�MA

A

for

some orale A, but the latter result is easier than theorem 2.

2 De�nitions

We'll onsider languages over the binary alphabet B = f0; 1g. The set of

all binary words of length n is denoted by B. Funtions with binary values

are alled prediates. Instead of P (x) = 1 where P is a prediate we'll write

simply P (x). All Turing mahines output 0, 1.

De�nition 1. A language L belongs to PP i� there is a polynomial time

probabilisti Turing mahineM suh that x 2 L, Prob[M(x; r) = 1℄ > 1=2

where the probability is taken over the uniform distribution in the set of

random inputs r of M .

Remark. We an easily prove that in de�nition 1 the threshold 1=2 may

be replaed with any other onstant or with any rational number of the

form a(x)=2

s(jxj)

where s is a polynomial and a:B

�

! N is polynomially

omputable funtion (integers are written in binary notation).

De�nition 2. L 2 MA i� there are a polynomial p and polynomially

omputable prediate Q(x; r; s) suh that

x 2 L) 9s 2 B

p(jxj)

Prob

r

[Q(x; r; s)℄ > 2=3

x 62 L) 8s 2 B

p(jxj)

Prob

r

[Q(x; r; s)℄ < 1=3;

where probability is taken over uniform distribution in B

p(jxj)

.

De�nition 3. L 2 AM i� there are a polynomial p and polynomial om-

putable prediate Q(x; r; s) suh that

x 2 L) Prob[9s 2 B

p(jxj)

Q(x; r; s)℄ > 2=3

x 62 L) Prob[9s 2 B

p(jxj)

Q(x; r; s)℄ < 1=3

where probability is taken over uniform distribution in r 2 B

p(jxj)

.

Theorem [4℄. MA � AM.
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3 Results

Theorem 1. MA � PP.

Proof. Let L 2 MA and let p and Q are orrespondingly polynomial and

prediate from de�nition 2. Using standard ampli�ation we an onstrut

a new polynomial p

1

and a new polynomially omputable prediate Q

1

suh

that

x 2 L) 9s 2 B

p(jxj)

Prob[Q

1

(x; r; s)℄ > 1� 4

�p(jxj)

x 62 L) 8s 2 B

p(jxj)

Prob[Q

1

(x; r; s)℄ > 4

�p(jxj)

where probability is taken over the uniform distribution in r 2 B

p

1

(jxj)

.

Consider now the uniform distribution on pairs hr; si 2 B

p(jxj)+p

1

(x)

. We

have x 2 L)

Prob[Q

1

(x; r; s)℄ > 2

�p(jxj)

(1� 4

�p(jxj)

) > 4

�p(jxj)

and

x 62 L) Prob[Q

1

(x; r; s)℄ < 4

�p(jxj)

:

Using the Remark we get L 2 PP.

Theorem 2. There is an orale A suh that

AM

A

\ o-AM

A

6� PP

A

:

Proof. For simpliity of notation we'll onstrut an orale A suh that

AM

A

6� PP

A

. The proof an be easily transformed into the proof of the

theorem.

Let A be a language and let n 2 N. We will onsider the value of A on

the words of length 2n as the matrix of order 2

n

� 2

n

with oeÆients 0,

1. Denote this matrix by A

n

. Call A

n

1-goof i� > 2=3 rows of A

n

ontain

at least one 1 and all A

n

0-good i� < 1=3 rows of A

n

ontain at least one

1. Call A

n

good if it is 1-good or 0-good. Assoiate with any orale A the

language L(A) = f1

n

j A

n

is 1-goodg. We'll onstrut an orale A suh that

A

n

is good for all n 2 N and L(A) 62 PP

A

. From the former ondition we

an easy dedue that L(A) 2 AM

A

.

To ensure L(A) 62 PP

A

let us enumerate all polynomial probabilisti

mahines and denote i-th mahine by PP

i

. De�ne for beginning A in suh

a way that A

n

is good for all n 2 N. We will perform steps with numbers 0,

1, 2; : : :. On the i-th step we'll ensure that L(A) di�ers from the language
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reognized by PP

A

i

. To this end we will hange the value of A on �nite

number of words in suh a way that for some n 2 N holds

1

n

2 L(A) 6, Prob[PP

A

i

(1

n

; r) = 1℄ > 1=2 (1)

After hanging we will �x the value of A on all words whih the truth value

of (1) depends on. This means that on later steps we will not hange the

value of A on these words.

Let us desribe i-th step. Choose n suh that no value of A (the orale

onstruted on (i�1)th step) on words with length 2n is �xed and suÆiently

large (how large must be n we'll see in the end of the proof). Denote by M

n

the set of all 0{1-matries of order 2

n

� 2

n

. If B 2M

n

then denote by A[B℄

the orale obtained from A by replaing A

n

with B. Let us prove that there

is a good B 2 M

n

suh that for A[B℄ holds (1). Suppose the ontrary: for

all good B 2M

n

B is 1-good , Prob[PP

A[B℄

i

(1

n

; r) = 1℄ > 1=2 (2)

We'll dedue a ontradition. Denote for brevity PP

A[B℄

i

(1

n

; r) by P (B; r).

We'll onstrut two probability distributions �, � on M

n

suh that the

matrix B taken at random with respet to � with high probability is 1-good

and the matrix B taken at random with respet to � with high probability

is 0-good. More preisely � and � will satisfy

Prob

�

[B is 1-good℄ > 1� 2

�h(n)

(3)

Prob

�

[B is 0-good℄ > 1� 2

�h(n)

(4)

where h(n) grows superpolynomially.

Let us denote by E

�

, E

�

, and E orrespondingly the average with respet

to distributions �, � and uniform distribution in the set of r's. Let us prove

that (3) and (4) yield

E

�

EP (B; r) > E

�

EP (B; r) (5)

Indeed if � will be onentrated only on 1-good matries, we would have

E

�

EP (B; r) > E

�

1

2

=

1

2

and more preisely E

�

EP (B; r) �

1

2

+ 2

�poly(n)

. If

� will be onentrated only on 0-good matries we would have E

�

EP (B; r) <

1

2

. As the gap 2

�poly(n)

is less than 2

�h(n)

we see that for suÆiently large

n, (5) follows from (3) and (4). On the other hand, � and � will be suh

that

E

�

P (B; r) = E

�

P (B; r) for all r: (6)
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Evidently this ontradits (5).

Distribution � and � will be onstruted as follows. Let � be some proba-

bility distribution in the segment [0; 1℄. Let us assoiate with � a probability

distribution in M

n

denoted by �(�). A random matrix B with respet to

�(�) is generated as follows. Pik independently random p

1

; : : : ; p

2

n

in [0; 1℄

with respet to �. Then for eah j � 2

n

take j-th row of B as the sequene

of 2

n

Bernoulli tests with probability of 1 equal to p

j

. More formally, for

any matrix (

jl

) 2M

n

Prob

�(�)

[B = (

jl

)℄ =

2

n

Y

j=1

(

Z

1

0

(

2

n

Y

l=1

x



jl

j

) d�(x

j

))

where x

0

= 1� x, x

1

= x.

Let us denote by k the maximal number of queries whih mahine PP

i

makes to orale on inputs of the form 1

n

; r. Note that k � poly(n). Consider

the �rst k moments of �:

m

1

(�) =

Z

1

0

x d�(x); m

2

(�) =

Z

1

0

x

2

d�(x); : : : ;

m

k

(�) =

Z

1

0

x

k

d�(x):

We laim that for all r, E

�(�)

P (B; r) is a polynomial in m

1

(�), m

2

(�),

: : : ;m

k

(�) (the oeÆients of this polynomial depend only on PP

i

, n and

r).

Let us prove this laim. Remember that P (B; r) = PP

A[B℄

i

(1

n

; r). Let

us �x some B 2 M

n

and simulate the work of PP

i

on 1

n

; r with orale

A[B℄. Let us write down the questions to B (i.e. the questions of length

2n to the orale) made during this work and also the answers. Denote by

u

1

; : : : ; u

k

the questions and by b

1

; : : : ; b

k

the answers (thus u

1

; : : : ; u

k

2 B

2n

,

b

1

; : : : ; b

k

2 B). Let us all the sequene (u

1

; : : : ; u

k

; b

1

; : : : ; b

k

) the protool

on B and denote it by Prot(B). Denote also

Prot = fProt(B) j B 2M

n

; P (B; r) = 1g:

Obviously

Prot(B

1

) = Prot(B

2

)) P (B

1

; r) = P (B

2

; r):

Therefore we have

E

�(�)

P (B; r) =

X

v2Prot

Prob

�(�)

[Prot(B) = v℄:
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Thus it suÆes to prove that for every v 2 Prot, Prob

�(�)

[Prot(B) = v℄

is a polynomial in m

1

(�), m

2

(�), : : : ;m

k

(�). Let us �x some v 2 Prot,

v = (u

1

; : : : ; u

k

; b

1

; : : : ; b

k

). Evidently

Prob

�(�)

[Prot(B) = v℄ =

= Prob

�(�)

[B(u

i

) = b

i

; i = 1; : : : ; k℄:

Remember that eah u

i

is onsidered to be a pair of numbers of a row and a

olumn in B, denote the number of the row by l

i

. Denote for eah s � 2

n

by



s

the number of di�erent u

i

, i = 1; : : : ; k suh that l

i

= s

i

and b

i

= 1 and

by d

s

the number of di�erent u

i

, i = 1; : : : ; k suh that l

i

= s

i

and b

i

= 0.

Then

Prob

�(�)

[Prot(B) = v℄ =

2

n

Y

s=1

Z

1

0

x



s

(1� x)

d

s

d�(x):

Evidently,

R

1

0

x



s

(1�x)

d

s

d�(x) is a linear ombination ofm

r

(�) =

R

1

0

x

r

d�(x),

r = 0; 1; : : : ; k (beause 

s

+ d

s

� k). Thus the laim is proved.

Therefore if we take two probability distributions � and � in [0; 1℄ suh

that

m

i

(�) = m

i

(�) for i = 1; 2; : : : ; k; (7)

and take � = �(�) and � = �(�) we will get (6). In order to satisfy (3) we'll

take � suh that

Prob

�

[p � 2

�n+4

℄ �

4

5

(8)

Let us prove that (8) implies (3). Suppose that � satis�es (8). Let B be a

random matrix with respet to �(�). Denote by q the probability that a �xed

row of B has only zeros. Obviously, q �

1

5

+

4

5

(1�2

�n+4

)

2

n

�

1

5

+

4

5

e

�16

<

1

4

(for large n). From the Law of large numbers it follows that with probability

1 � 2

�onst�2

n

the frequene of nonzero rows in B is greater than 2=3. In

order to satisfy (4) we will take � = �(�) suh that

Prob

�

[p = 0℄ �

3

4

: (9)

Let us prove that (9) implies (4). Let � satisfy (9) and let B be a random

matrix with respet to �(�). Then the probability q that a �xed row of B

has only zeros is greater than 3=4. Therefore we an reason as in above ase.

Thus it remains to prove the following lemma.
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Lemma. Let p(n) be a polynomial. Then for all suÆiently large n there

are probability distributions � and � in [0; 1℄ satisfying the onditions (8),

(9) and (7) for k = p(n).

Proof. We'll de�ne � expliitly and � impliitly by using a riterion on the

existene of a measure in [0; 1℄ with given moments (a measure di�ers from

a probability distribution with that a measure of entire segment [0; 1℄ an

be di�erent from 1; thus the probability distribution an be de�ned as any

measure � suh that �([0; 1℄) =

R

1

0

1 � d�(x) = 1).

Let m = (m

0

;m

1

; : : : ;m

k

) be a sequene of real numbers. Let a(x) =

P

k

i=0

a

i

x

i

be a polynomial of degree � k. De�ne (m;a(x)) to be equal to

m

0

a

0

+m

1

a

1

+ � � � +m

k

a

k

. The following theorem is due to M.Riesz. In

paper [5℄ this theorem is proved for the in�nite sequenes of moments and

measures in the set of reals. Riesz' proof is good also in our ase. See also

[6℄ (and [7℄ in Russian).

Riesz' theorem. Two following onditions are equivalent:

(i) There is a measure � in [0; 1℄ suh that for all i 2 f0; 1; : : : ; kg,

R

1

0

x

i

d�(x) = m

i

.

(ii) For all polynomials a(x) of degree � k, nonnegative on [0; 1℄, it holds

(m;a(x)) � 0.

If k is even then (ii) is equivalent to the ondition

(iii) For all polynomials b(x), (x), deg b(x) � k=2, deg (x) � k=2 � 1, it

holds (m; b(x)

2

) � 0, (m;x(1� x)(x)

2

) � 0.

The impliation (ii))(iii) is obvious. The impliation (i))(ii) is simple

and we'll use its proof in the sequel. Let us prove it. Assume that (i) is true

and let � be a measure satisfying (i). Let a(x) =

P

k

i=0

a

i

x

i

be a polynomial

nonnegative on [0; 1℄. Then

(m;a(x)) =

k

X

i=0

a

i

m

i

=

k

X

i=0

a

i

Z

1

0

x

i

d�(x)

=

Z

1

0

a(x) d�(x) � 0:

For the seek of ompleteness we'll also prove that (iii))(ii) and (ii))(i) in

the Appendix.
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Our plan is as follows. We'll de�ne a probability distribution � on [0; 1℄

suh that

Z

1

0

b(x)

2

d�(x) �

3

4

b(0)

2

for all polynomials (10)

b(x) with degree � k=2:

Then we'll de�ne the sequene m = (m

0

; : : : ;m

k

) by equalities m

0

= 1=4,

m

1

= m

1

(�), : : :, m

k

= m

k

(�).

This sequene m satis�es (iii) beause if b(x) has degree �

k

2

then

(m; b(x)

2

) =

R

1

0

b(x)

2

d�(x)�

3

4

b(0)

2

� 0 (beause m

0

=

1

4

= m

0

(�)�

3

4

) and

if (x) has degree �

k

2

� 1 then

(m;x(1� x)(x)

2

) =

Z

1

0

x(1� x)(x)

2

d�(x) � 0

(beause the polynomial x(1� x)(x)

2

has no onstant term).

By Riesz' theorem there is a measure � in [0; 1℄ suh that m

0

(�) =

R

1

0

1 d�(x) =

1

4

and for all i 2 f1; 2; : : : ; kg,m

i

(�) =

R

1

0

x

i

d�(x) =

R

1

0

x

i

d�(x) =

m

i

(�). Let g

�

(x) be distribution funtion of �, i.e. g

�

(x) = �([0; x℄). Con-

sider the funtion f(x) =

3

4

+ g

�

(x). Then f(x) is the distribution funtion

of some probability distribution � in [0; 1℄.

Evidently � satis�es the required onditions.

Thus it remains to onstrut � suh that (8) and (10) hold. Let us denote

for brevity 2

�n+4

by �. Let us de�ne � by equalities Prob

�

[p = �℄ = 4=5

and if A � [0; 1℄nf�g then Prob

�

[p 2 A℄ =

1

5

R

x2A

�(x) dx where �(x) =



1

p

1�(1�2x)

2

and 

1

is hosen in suh a way that

R

1

0

�(x) dx = 1. In other

words, � is the probability distribution suh that for allA � [0; 1℄ Prob

�

[p 2 A℄ =

4

5

�

A

(�)+

1

5

R

1

0

�

A

(x)�(x) dx, where �

A

stands for the harateristi funtion

of A.

Evidently (8) is true.

Let us prove (10). Let b(x) be a polynomial of degree � k=2. Then

R

1

0

b(x)

2

d�(x) =

4

5

b(�)

2

+

1

5

R

1

0

b(x)

2

�(x) dx. We laim that either

4

5

b(�)

2

or

1

5

R

1

0

b(x)

2

�(x) dx is greater than

3

4

b(0)

2

(for suÆiently large n). Indeed,

assume that

1

5

R

1

0

b(x)

2

�(x) dx �

3

4

b(0)

2

that is

Z

1

0

�

b(x)

b(0)

�

2

�(x) dx �

15

4

Let us prove that

4

5

b(�)

2

�

3

4

b(0)

2

. In fat, we'll prove that

b(�)

b(0)

is

exponentially lose to 1. Let us substitute 1�2x = y for onveniene. Then

8



we have

Z

1

�1

d(y)

2

(y) dy �

15

2

; (11)

where d(y) =

b(

1�y

2

)

b(0)

, (y) =



1

p

1�y

2

. Thus we have to prove that d(1 � 2�)

is lose to d(1) = 1. Let m = k=2 and T

0

(x), T

1

(x), : : : ; T

m

(x) be (m + 1)

�rst Chebyshev's polynomials, i.e. T

i

(os t) = os it for all t 2 [0; �℄. The

density �(x) is hosen in suh a way that T

i

(y) are orthogonal with density

(y), moreover they are almost orthonormal:

R

1

�1

T

i

(y)T

j

(y)(y) dy is equal

to 0 if i 6= j, is equal to 

2

if i = j 6= 0 and is equal to 

3

if i = j = 0 where



2

, 

3

are some positive onstants. It is well known that the polynomials

T

0

, T

1

, : : : ; T

m

form a basis in the spae of all polynomials of degree � m.

Let d

0

; : : : ; d

m

be the oeÆients of the polynomial d(y) in this basis. Then

(11) yields that

R

1

�1

(

P

m

i=0

d

i

T

i

(y))

2

(y) dy =

P

m

i=0

d

2

i

R

1

�1

T

i

(y)

2

(y) dy �

15

2

.

Hene for some onstant 

4

we have jd

0

j; : : : ; jd

m

j � 

4

. Let us dedue from

this that jd(1 � 2�) � d(1)j is small. Let us denote 2� by �. We have

jd(1 � �)� d(1)j �

P

m

i=0

jd

i

jjT

i

(1� �)� T

i

(1)j.

We laim that jT

i

(1��)�T

i

(1)j = i

2

�(1+o(1)) as i

2

� ! 0. Suppose that

this is already proved. Then for suÆiently large n we have jd(1��)�d(1)j �

(m+ 1) � 

4

�m

2

� � � 2. Therefore

jd(1� �)� d(1)j � poly(n)2

�n+4

:

Hene

b(�)

b(0)

= d(1� �) � 1� poly(n)2

�n+4

�

99

100

for suÆiently large n.

Thus it remains to prove that T

i

(1��)�T

i

(1) = i

2

�(1+o(1)) as i

2

� ! 0.

Let � 2 [0; �℄ be de�ned by equality os� = 1��. Then � =

�

2

2

(1+o(1))

as � ! 0. Hene

T

i

(1� �) = T

i

(os�) = os i� = 1�

�

2

i

2

2

(1 + o(1)) =

1� i

2

�(1 + o(1)) = T

i

(1)� i

2

�(1 + o(1)):

This ompletes the proof of the lemma.
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4 Appendix

1. Proof of impliation (ii))(i) in Riesz' theorem.

Assume that (ii) is true. Let us enumerate q

1

; q

2

; : : : all rational numbers

from [0; 1℄ and de�ne r

i

(x) to be a funtion on [0; 1℄ suh that r

i

(x) is equal

to 0 if 0 � x � q

i

and equal to 1 if q

i

< x � 1. Consider the linear spae L

over R onsisting of all funtions f(x) on [0; 1℄ of the form

f(x) =

X

i2I

s

i

r

i

(x) + a(x) (12)

where I is a �nite set of natural numbers, s

i

2 R and a(x) is a polynomial

with degree � k. Let K be the set of all f 2 L suh that f is nonnegative

on [0; 1℄.

Claim. There is a linear funtional l de�ned on L suh that l is nonnegative

on K and l(a(x)) = (m;a(x)) for all polynomials a(x) of degree � k.

Proof of the laim. Let us de�ne L

i

to be the set of all funtions f(x) of the

form (12) with I = f1; 2; : : : ; ig and de�ne l

0

to be the funtional de�ned

on L

0

(the set of all polynomials of degree � k) as l

0

(a(x)) = (m;a(x)).

Then (ii) means that l

0

is nonnegative on K \L

0

. Using the indution we'll

prove that there is a sequene l

0

; l

1

; l

2

: : : of linear funtionals suh that l

i

is

de�ned on L

i

, is nonnegative on L

i

\K and extends l

i�1

. Then as l we an

take the union of all l

i

, i 2N.

Let the funtional l

i

be already de�ned and nonnegative on L

i

\ K.

Obviously we have to de�ne the value of l

i+1

only on r

i+1

(x). Suppose

that this value is equal to v. One an easily verify that in this ase l

i+1

is

nonnegative on L

i+1

\K i� v satis�es two onditions

(a) v � l

i

(f(x)) for all f(x) 2 L

i

suh that

r

i+1

(x) � f(x) for all x 2 [0; 1℄,

(b) l

i

(g(x)) � v for all g(x) 2 L

i

suh that

r

i+1

(x) � g(x) for all x 2 [0; 1℄.

Let us prove that there is v 2 R satisfying (a) and (b). Let us denote

A = fl

i

(f(x)) j f(x) 2 L

i

; 8x 2 [0; 1℄ r

i+1

(x) � f(x)g

B = fl

i

(g(x)) j g(x) 2 L

i

; 8x 2 [0; 1℄ g(x) � r

i+1

(x)g

10



Evidently it is suÆient to prove that A 6= ;, B 6= ; and 8v

1

2 A 8v

2

2 B

v

1

� v

2

.

As r

i+1

(x) is bounded and L

0

ontains all onstant funtions, we have

A 6= ;, B 6= ;. If v

1

2 A, v

1

= l

i

(f(x)) and v

2

2 B, v

2

= l

i

(g(x)), then

(f(x)� g(x)) 2 K therefore v

1

= l

i

(f(x)) � l

i

(g(x)) = v

2

.

The laim is proved.

Now let us onsider the funtion g de�ned on [0; 1℄ by g(x) = supfl(r

i

) j

q

i

� x; i 2 Ng. We an easily prove that g(x) is monotone and ontinuous

from the right (lim

y!x+0

g(y) = g(x)). Hene g is the distribution funtion

for some measure � in [0; 1℄, i.e. there is a measure � in [0; 1℄ suh that

�([0; x℄) = g(x) for all x 2 [0; 1℄. Obviously for all i,

R

1

0

r

i

(x) d�(x) =

l(r

i

(x)). From this and the nonnegativeness of l on K we an easily dedue

that

R

1

0

x

i

d�(x) = l(x

i

) = m

i

for all i 2 f0; 1; : : : ; kg.

2. Proof of impliation (iii))(ii) in Riesz' theorem. This impliation

easily follows from the fat that for even k every polynomial of degree � k

whih is nonnegative on [0; 1℄ has the form a(x)

2

+ x(1 � x)b(x)

2

where

deg a(x) � k=2, deg b(x) � k=2� 1. The latter fat in turn follows from the

fat that eah polynomial nonnegative on the set fy 2 R j y � 0g has the

form p(y)

2

+yq(y)

2

. Indeed, suppose that the latter assertion is true and (x)

is a polynomial with degree � k nonnegative on [0; 1℄. Then the polynomial

(

y

1+y

)(1+y)

k

is nonnegative on [0;+1[ therefore for some polynomials p(y)

and q(y) it holds (

y

1+y

)(1 + y)

k

= p(y)

2

+ yq(y)

2

. Evidently deg p � k=2,

deg q � k=2 � 1. Substituting y =

x

1�x

we get (x) = p(

x

1�x

)

2

(1 � x)

k

+

x(1� x)

k�1

q(

x

1�x

)

2

. Evidently

a(x) = p(

x

1� x

)(1� x)

k=2

and

b(x) = q(

x

1� x

)(1� x)

k=2�1

are polynomials of degrees orrespondingly � k=2 and � k=2 � 1. Thus

it remains to prove that every polynomial r(y) whih is nonnegative on

[0;+1[ has the form r(y) = p(y)

2

+ yq(y)

2

. Let us de�ne P to be the set of

all polynomials having suh form.

Let r(y) is nonnegative on [0;+1[. Obviously, it is suÆient to prove

two assertions: (a) r(y) an be represented as the produt of polynomials

from P and (b) if r

1

(y) 2 P and r

2

(y) 2 P then r

1

(y) � r

2

(y) 2 P . Let us

deompose r(y) into the produt of polynomials irreduible over R

r(y) = A � (y + a

1

)

i

1

� � � (y + a

n

)

i

n

�
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�(y

2

+ b

1

y + 

1

)

j

1

� � � (y

2

+ b

m

y + 

m

)

j

m

Evidently A > 0. Let us take arbitrary k � n. Then a

k

� 0 or i

k

is even.

If a

k

� 0 then y + a

k

2 P as y + a

k

= (

p

a

k

)

2

+ y � 1

2

. If i

k

is even then

(y + a

k

)

i

k

2 P . Let us take arbitrary k � m. Obviously 

k

> 0 beause

s(y) = y

2

+b

k

y+

k

is irreduible. We have s(y) = (y�

p



k

)

2

+y(2

p



k

+b

k

).

Sine s(y) is irreduible, we have s(

p



k

) =

p



k

(2

p



k

+ b

k

) � 0 therefore

s(y) 2 P .

The assertion (b) follows from the equality

(p(y)

2

+ yq(y)

2

)(s(y)

2

+ yt(y)

2

) =

= (p(y)s(y)� yq(y)t(y))

2

+ y(p(y)t(y) + q(y)s(y))

2

:
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