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Abstract

It is proved that MA C PP (relativizable) and that AM“Nco-AM* ¢ PP
for some oracle A.

1 Introduction

Recently two interesting results about the class PP were obtained. We mean
the result of S.Toda [1] that polynomial hierarchy PH is polynomially Tur-
ing reducible to PP and the result that PP is closed under polynomial truth
table reductions (see [2] and [3]). These results make more interesting to
study PP. Another reason to study PP is that this class has the following
interpretation. Random input r of the probabilistic machine M that recog-
nizes a language L can be regarded as a voter and the output M (z,r) of M
on the input word z and random input r can be regarded as the opinion of
voter r about whether x is in L. From this point of view PP is the class
of all languages L such that membership of z in L can be determined via
election with 2P°%(2) yoters, every voter being polynomial time bounded.

In this paper we prove one (simple) positive theorem about PP and one
negative theorem:

Theorem 1. MA C PP.

Theorem 2. AM” Nco-AM”* ¢ PP* for some oracle A.

Theorem 1 is relativizable. Theorem 2 shows that theorem 1 cannot be
strengthened to relativezable inclusion AM C PP (remember that MA C
AM [4]). Another meaning of theorem 2 is that Toda’s result that PH is
Turing reducible to PP cannot be strengthened to relativizable inclusion



PH C PP because AM C II, [4] (note that Toda’s proof is relativizable).
From theorems 1 and 2 we can deduce that AM*4 N co-AM* ¢ MA“ for
some oracle A, but the latter result is easier than theorem 2.

2 Definitions

We'll consider languages over the binary alphabet B = {0,1}. The set of
all binary words of length n is denoted by B. Functions with binary values
are called predicates. Instead of P(z) = 1 where P is a predicate we’ll write
simply P(z). All Turing machines output 0, 1.

Definition 1. A language L belongs to PP iff there is a polynomial time
probabilistic Turing machine M such that x € L < Prob[M(z,r) = 1] > 1/2
where the probability is taken over the uniform distribution in the set of
random inputs r of M.

Remark. We can easily prove that in definition 1 the threshold 1/2 may
be replaced with any other constant or with any rational number of the
form a(xz)/250%) where s is a polynomial and a:B* — N is polynomially
computable function (integers are written in binary notation).

Definition 2. L € MA iff there are a polynomial p and polynomially
computable predicate Q(z,r,s) such that

z € L = 3s € B Prob,[Q(z,r,s)] > 2/3

r ¢ L =VseBr) Prob,[Q(z,r,s)] < 1/3,

where probability is taken over uniform distribution in BP(#]),

Definition 3. L € AM iff there are a polynomial p and polynomial com-
putable predicate Q(x,r,s) such that

z € L = Prob[ds € BPIPDQ(z,r,5)] > 2/3

z ¢ L = Prob[3s € BPIPDQ(z,r, 5)] < 1/3

where probability is taken over uniform distribution in r € BP(z])

Theorem [4]. MA C AM.



3 Results
Theorem 1. MA C PP.

Proof. Let L € MA and let p and () are correspondingly polynomial and
predicate from definition 2. Using standard amplification we can construct
a new polynomial p; and a new polynomially computable predicate ()1 such
that

z € L= 3s € BPI?D Prob[Q, (z,r, s)] > 1 — 477D

z ¢ L= Vs € BI"D Prob[Q (z,r,5)] > 4 PD

where probability is taken over the uniform distribution in r € B2,
Consider now the uniform distribution on pairs (r,s) € BP(zD+ri(z)  We
have r € L =

Prob[Q; (z,r,s)] > 27P(2D (1 — 4=P(2Dy 5 4=r(e)

and
z & L = Prob[Q; (z,r,s)] < 472D,

Using the Remark we get L € PP.

Theorem 2. There is an oracle A such that
AMA Nco-AMA ¢ PP4.

Proof. For simplicity of notation we’ll construct an oracle A such that
AM* ¢ PPA. The proof can be easily transformed into the proof of the
theorem.

Let A be a language and let n € N. We will consider the value of A on
the words of length 2n as the matrix of order 2" x 2" with coefficients 0,
1. Denote this matrix by A,. Call A, 1-goof iff > 2/3 rows of A,, contain
at least one 1 and call A,, 0-good iff < 1/3 rows of A, contain at least one
1. Call A4, good if it is 1-good or 0-good. Associate with any oracle A the
language L(A) = {1" | A, is 1-good}. We’ll construct an oracle A such that
A, is good for all n € N and L(A) ¢ PPA. From the former condition we
can easy deduce that L(A) € AM*.

To ensure L(A) ¢ PP* let us enumerate all polynomial probabilistic
machines and denote i-th machine by PP;. Define for beginning A in such
a way that A, is good for all n € N. We will perform steps with numbers 0,
1, 2,.... On the i-th step we’ll ensure that L(A) differs from the language



recognized by PP/, To this end we will change the value of A on finite
number of words in such a way that for some n € N holds

1" € L(A) ¢ Prob[PPA(1",r) =1] > 1/2 (1)

After changing we will fix the value of A on all words which the truth value
of (1) depends on. This means that on later steps we will not change the
value of A on these words.

Let us describe i-th step. Choose n such that no value of A (the oracle
constructed on (i—1)th step) on words with length 2n is fixed and sufficiently
large (how large must be n we’ll see in the end of the proof). Denote by M,
the set of all 0—1-matrices of order 2" x 2". If B € M,, then denote by A[B]
the oracle obtained from A by replacing A,, with B. Let us prove that there
is a good B € M,, such that for A[B] holds (1). Suppose the contrary: for
all good B € M,

B is 1-good < Prob[PP P17 r) = 1] > 1/2 (2)

We'll deduce a contradiction. Denote for brevity PPiA[B](ln, r) by P(B,r).

We’ll construct two probability distributions u, v on M,, such that the
matrix B taken at random with respect to p with high probability is 1-good
and the matrix B taken at random with respect to v with high probability
is 0-good. More precisely p and v will satisfy

Prob,[B is 1-good] > 1 — 27h(") (3)

Prob,[B is 0-good] > 1 — 27" (4)

where h(n) grows superpolynomially.

Let us denote by E,,, E,, and E correspondingly the average with respect
to distributions p, v and uniform distribution in the set of r’s. Let us prove
that (3) and (4) yield

E,EP(B,r) > E,EP(B,r) (5)

Indeed if p will be concentrated only on 1-good matrices, we would have
E,EP(B,r) > E,} = i and more precisely E,EP(B,r) > 1 + 27Polv(n) [f
v will be concentrated only on 0-good matrices we would have E,EP(B,r) <
%. As the gap 27P°W(") jg less than 27" we see that for sufficiently large
n, (5) follows from (3) and (4). On the other hand, p and v will be such
that

E,P(B,r) =E,P(B,r) for all r. (6)
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Evidently this contradicts (5).

Distribution p and v will be constructed as follows. Let o be some proba-
bility distribution in the segment [0, 1]. Let us associate with o a probability
distribution in M,, denoted by a(c). A random matrix B with respect to
a(o) is generated as follows. Pick independently random py, ..., pan in [0, 1]
with respect to o. Then for each j7 < 2" take j-th row of B as the sequence
of 2" Bernoulli tests with probability of 1 equal to p; . More formally, for
any matrix (cj;) € M,

1 2"

2"’L
Prob, ) [B = (cji)] H/ H:c“ )do(z5))
j=1

where 20 =1 — z, 2! = z.

Let us denote by k the maximal number of queries which machine PP;
makes to oracle on inputs of the form 1™, r. Note that & < poly(n). Consider
the first £ moments of o:

mi (o) =/01xda(:c), mg(a)z/oleda(x),...,

mg(o) = /01 ¥ do(z).

We claim that for all r, E,)P(B,r) is a polynomial in mi(c), ma(0),
.,mg(o) (the coefficients of this polynomial depend only on PP;, n and
r).

Let us prove this claim. Remember that P(B,r) = PPiA[B](ln,r). Let
us fix some B € M, and simulate the work of PP; on 1",r with oracle
A[B]. Let us write down the questions to B (i.e. the questions of length
2n to the oracle) made during this work and also the answers. Denote by
ui,...,uy the questions and by by, . .., by the answers (thus ui, ..., u; € B>,
bi,...,br € B). Let us call the sequence (uy,...,ug,b1,...,b;) the protocol
on B and denote it by Prot(B). Denote also

Prot = {Prot(B) | B € M,,, P(B,r) =1}.

Obviously
Prot(B;) = Prot(By) = P(B1,r) = P(Ba,r).

Therefore we have

Eyq) P Z Proby ) [Prot(B) = v].
vEProt



Thus it suffices to prove that for every v € Prot, Prob,,)[Prot(B) = v]
is a polynomial in mq (o), ma(c), ...,mk(c). Let us fix some v € Prot,
v = (Ul, ey Uy b1, e ,bk) Evidently

Prob,(q[Prot(B) = v] =

= PrOba(g) [B(ul) = bi,i = 1, e ,k].

Remember that each u; is considered to be a pair of numbers of a row and a
column in B, denote the number of the row by /;. Denote for each s < 2™ by
¢s the number of different u;, 4 = 1,...,k such that I; = s; and b; = 1 and
by ds the number of different u;, 7+ = 1,...,k such that [; = s; and b; = 0.
Then

Prob(q [Prot(B H/ (1 —z)% do(z).

Evidently, fol 2% (1—x)% do(z) is a linear combination of m,.(o) = fol z" do(z),
r=20,1,...,k (because ¢; + ds < k). Thus the claim is proved.
Therefore if we take two probability distributions o and 7 in [0, 1] such
that
m;(o) = m;(7) fori=1,2,... k, (7)

and take p = (o) and v = a(7) we will get (6). In order to satisfy (3) we’ll
take o such that

4
Prob,[p > 27""] > = (8)

Let us prove that (8) implies (3). Suppose that o satisfies (8). Let B be a
random matrix with respect to (o). Denote by ¢ the probability that a fixed
row of B has only zeros. Obviously, ¢ < 14+ 2(1—-27"")2" & L4 2716 < 1
(for large n). From the Law of large numbers it follows that with probability
1 — 27¢mst2" the frequence of nonzero rows in B is greater than 2/3. In

order to satisfy (4) we will take v = «(7) such that

3
Let us prove that (9) implies (4). Let 7 satisfy (9) and let B be a random
matrix with respect to a(7). Then the probability ¢ that a fixed row of B
has only zeros is greater than 3/4. Therefore we can reason as in above case.
Thus it remains to prove the following lemma.



Lemma. Let p(n) be a polynomial. Then for all sufficiently large n there
are probability distributions o and 7 in [0, 1] satisfying the conditions (8),
(9) and (7) for k = p(n).

Proof. We’ll define o explicitly and 7 implicitly by using a criterion on the
existence of a measure in [0, 1] with given moments (a measure differs from
a probability distribution with that a measure of entire segment [0, 1] can
be different from 1; thus the probability distribution can be defined as any
measure g such that p([0,1]) = fol 1-du(z) =1).

Let m = (mg,mq,...,my) be a sequence of real numbers. Let a(z) =
Sk, a;z’ be a polynomial of degree < k. Define (m,a(z)) to be equal to
moag + miay + -+ - + mgag. The following theorem is due to M.Riesz. In
paper [5] this theorem is proved for the infinite sequences of moments and
measures in the set of reals. Riesz’ proof is good also in our case. See also
[6] (and [7] in Russian).

Riesz’ theorem. Two following conditions are equivalent:

(i) There is a measure p in [0,1] such that for all i € {0,1,...,k},
J o du() = mi.

(ii) For all polynomials a(z) of degree < k, nonnegative on [0, 1], it holds
(m,a(x)) > 0.
If k is even then (ii) is equivalent to the condition

(iii) For all polynomials b(x), c(z), degb(z) < k/2, dege(x) < k/2 — 1, it
holds (m, b(x)?) >0, (m,z(1 — z)c(z)?) > 0.

The implication (ii)=-(iii) is obvious. The implication (i)=-(ii) is simple
and we’ll use its proof in the sequel. Let us prove it. Assume that (i) is true
and let 1 be a measure satisfying (i). Let a(z) = 3-¥_, a;z’ be a polynomial
nonnegative on [0,1]. Then

k k 1
WMW=§@w=§%Axwm

0

1
=/ a(z) du(z) > 0.

0

For the seek of completeness we’ll also prove that (iii)=-(ii) and (ii)=-(i) in
the Appendix.



Our plan is as follows. We'll define a probability distribution o on [0, 1]
such that

1
/ b(z)? do(z) > Zb(O)2 for all polynomials (10)

0

b(x) with degree < k/2.
Then we’ll define the sequence m = (my,...,my) by equalities my = 1/4,
my = my(0), ..., mp = my(0).

This sequence m satisfies (iii) because if b(z) has degree < £ then
(m,b(x)?) = fol b(z)? do(z) — 2b(0)? > 0 (because mg = 1 = mo(0) — ) and

if ¢(z) has degree < g — 1 then

1
(m, 2(1 — z)e(x)?) = /0 2(1 - 2)e(x)? do(z) > 0

(because the polynomial z(1 — z)c(z)? has no constant term).

By Riesz’ theorem there is a measure p in [0,1] such that mg(u) =
fol ldu(z) = 2 and foralli € {1,2,...,k}, m;(p) = fol ztdu(z) = fol z'do(z) =
m;(o). Let g,(z) be distribution function of y, i.e. g,(z) = ([0, z]). Con-
sider the function f(z) = 2 + g,(z). Then f(z) is the distribution function
of some probability distribution 7 in [0, 1].

Evidently 7 satisfies the required conditions.

Thus it remains to construct o such that (8) and (10) hold. Let us denote
for brevity 27"** by 6. Let us define o by equalities Prob,[p = 0] = 4/5
and if A C [0,1]\{0} then Prob,[p € A] = i [ _, p(z)dz where p(z) =

Cc
17(1172:1;)2
words, o is the probability distribution such that for all A € [0,1] Prob,[p € A] =
%XA(G) +3 fol X A(z)p(z) dz, where x4 stands for the characteristic function
of A.

Evidently (8) is true.

Let us prove (10). Let b(z) be a polynomial of degree < k/2. Then
fol b(z)? do(z) = %b(@)2 + 1 fol b(z)%p(z) dz. We claim that either %b(@)2 or
%fol b(z)?p(z)dz is greater than 2b(0)? (for sufficiently large n). Indeed,
assume that %fol b(z)%p(z) dz < 3b(0)? that is

[ (5) o<
b(9)

Let us prove that %b(@)2 > 3p(0)2. In fact, we’ll prove that _il

and ¢; is chosen in such a way that fol p(z)dx = 1. In other

b(0

is
exponentially close to 1. Let us substitute 1 — 2z = y for convenience. Then



we have

[ awrway <Y, (1)
-1

1
where d(y) = I)(T?)y), v(y) = \/fi7 Thus we have to prove that d(1 — 26)
is close to d(1) = 1. Let m = k/2 and Ty(z), Ti(z), ..., Tm(x) be (m + 1)
first Chebyshev’s polynomials, i.e. Tj(cost) = cosit for all ¢ € [0,7]. The
density p(z) is chosen in such a way that T;(y) are orthogonal with density
v(y), moreover they are almost orthonormal: f_ll Ti(y)T;(y)y(y) dy is equal
to 0 if 7 # 7, is equal to ¢ if 7 = j # 0 and is equal to ¢3 if i = j = 0 where
ca, c3 are some positive constants. It is well known that the polynomials
To, Ty, ..., Ty, form a basis in the space of all polynomials of degree < m.
Let dy, .. .,dy, be the coefficients of the polynomial d(y) in this basis. Then
(11) yields that [1} (S0 diT3 (1)) >y (y) dy = Sitg d? [1) Ti(y)?y(y) dy < 3.
Hence for some constant ¢4 we have |dp|,...,|dn| < cs4. Let us deduce from
this that |d(1 — 20) — d(1)| is small. Let us denote 20 by v. We have
d(1 = v) — d(1)] < S | IITs(1 — v) — To(1)].

We claim that |T;(1—v)—T;(1)| = i2v(14+0(1)) as i?v — 0. Suppose that
this is already proved. Then for sufficiently large n we have |d(1—v)—d(1)| <
(m +1)-cq - m? - v- 2. Therefore

d(1 = v) — d(1)] < poly(n)2 ™.

Hence b(0) 99
== =d(l-v)>1-poly(n)2 "> _—
for sufficiently large n.
Thus it remains to prove that T;(1—v) —T;(1) = i?v(14+o0(1)) as i’v — 0.

2

a

Let a € [0, 7] be defined by equality cos & = 1—v. Then v = %-(1+0(1))
as v — 0. Hence
o4’

2

T;(1 —v) =Ti(cos ) = cosia =1 — (1+0(1)) =

1—?v(1+0(1)) = T;(1) — i*v(1 + o(1)).

This completes the proof of the lemma.



4 Appendix

1. Proof of implication (ii)=-(i) in Riesz’ theorem.

Assume that (ii) is true. Let us enumerate q1, g, . . . all rational numbers
from [0, 1] and define r;(x) to be a function on [0, 1] such that r;(x) is equal
to 0if 0 <z < ¢; and equal to 1 if ¢; < z < 1. Consider the linear space L
over R consisting of all functions f(z) on [0,1] of the form

f@) =3 siri(z) +a(@) (12)

el

where I is a finite set of natural numbers, s; € R and a(z) is a polynomial
with degree < k. Let K be the set of all f € L such that f is nonnegative
on [0, 1].

Claim. There is a linear functional | defined on L such that [ is nonnegative
on K and l(a(z)) = (m,a(x)) for all polynomials a(z) of degree < k.

Proof of the claim. Let us define L; to be the set of all functions f(z) of the
form (12) with I = {1,2,...,i} and define [y to be the functional defined
on Lo (the set of all polynomials of degree < k) as ly(a(z)) = (m,a(z)).
Then (ii) means that [y is nonnegative on K N Ly. Using the induction we’ll
prove that there is a sequence Iy, [1,[s ... of linear functionals such that I; is
defined on L;, is nonnegative on L; N K and extends ;1. Then as [ we can
take the union of all I;, ¢ € N.

Let the functional /; be already defined and nonnegative on L; N K.
Obviously we have to define the value of /;11 only on r;11(z). Suppose
that this value is equal to v. One can easily verify that in this case [;;; is
nonnegative on L; 1 N K iff v satisfies two conditions

(a) v <;(f(z)) for all f(z) € L; such that

< f(z) for all z € [0,1],

rit1(z)
) < wv for all g(z) € L; such that

(b) li(g(x)
rit1(z) > g(z) for all z € [0, 1].
Let us prove that there is v € R satisfying (a) and (b). Let us denote
A={li(f(z)) | f(z) € Li, Yz € [0,1] riy1(z) < f(2)}

B ={li(g(x)) | (=) € Li, Yz €[0,1] g(z) < riy1(2)}
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Evidently it is sufficient to prove that A # (), B # () and Vv, € A Vv, € B
V1 > V9.

As riy1(x) is bounded and Ly contains all constant functions, we have
A# 0, B#0. Ifvy € A, vy = 1i(f(z)) and vo € B, vy = l;(g9(x)), then
(f(z) — g(x)) € K therefore v1 = I;(f(x)) > l;(g(x)) = va.

The claim is proved.

Now let us consider the function g defined on [0, 1] by g(z) = sup{l(r;) |
gi < z,i € N}. We can easily prove that g(z) is monotone and continuous
from the right (limy,_,;10g(y) = g(z)). Hence g is the distribution function
for some measure g in [0, 1], i.e. there is a measure p in [0, 1] such that
w([0,z]) = g(z) for all z € [0,1]. Obviously for all i, fol ri(z)du(z) =
[(r;(x)). From this and the nonnegativeness of [ on K we can easily deduce
that [y 2’ du(z) = I(z*) = m; for all i € {0,1,...,k}.

2. Proof of implication (iii)=-(ii) in Riesz’ theorem. This implication
easily follows from the fact that for even k every polynomial of degree < k
which is nonnegative on [0,1] has the form a(z)? + z(1 — z)b(z)? where
dega(z) < k/2, degb(x) < k/2 — 1. The latter fact in turn follows from the
fact that each polynomial nonnegative on the set {y € R | y > 0} has the
form p(y)?+yq(y)?. Indeed, suppose that the latter assertion is true and ¢(z)
is a polynomial with degree < k nonnegative on [0, 1]. Then the polynomial

()1 +y)* is nonnegative on [0, +-o0o[ therefore for some polynomials p(y)

and ¢(y) it holds c(+¥)(1 + y)* = p(y)? + yq(y)?. Evidently degp < k/2,

degq < k/2 — 1. Substituting y = %= we get c(z) = p(£)*(1 — )k 4

x

z(1 - z)F1q(+£)% Evidently
a(@) = p(;==)(1 = 2)"/* and
b(r) = q(;=—)(1 — o)

are polynomials of degrees correspondingly < k/2 and < k/2 — 1. Thus
it remains to prove that every polynomial r(y) which is nonnegative on
[0, +oo[ has the form 7(y) = p(y)? + yq(y)>. Let us define P to be the set of
all polynomials having such form.

Let r(y) is nonnegative on [0, +oo[. Obviously, it is sufficient to prove
two assertions: (a) r(y) can be represented as the product of polynomials
from P and (b) if r1(y) € P and r2(y) € P then r(y) - r2(y) € P. Let us
decompose r(y) into the product of polynomials irreducible over R

r(y) = A-(y+a)" - (y +an)" x

11



X (42 + by + 1) - (Y2 + by + em)m
Evidently A > 0. Let us take arbitrary £ < m. Then a; > 0 or i is even.
If ap > 0 then y+ar € P as y+a; = (\/@)2+y-12. If 4 is even then
(y + ap)™ € P. Let us take arbitrary k& < m. Obviously ¢; > 0 because
s(y) = y? +bry +cy, is irreducible. We have s(y) = (y —/cx)? +y(2\/ck +b).
Since s(y) is irreducible, we have s(\/cx) = \/ck(2y/Ck + by) > 0 therefore
s(y) € P.
The assertion (b) follows from the equality

(P(y)” +ya()*)(s(y)* + yt(y)*) =
= (p(y)s(y) — yaW)t))* + y(pW)ty) + a(y)s(y))>.
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