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Abstra
t

It is proved that MA � PP (relativizable) and that AM

A

\
o-AM

A

6� PP

A

for some ora
le A.

1 Introdu
tion

Re
ently two interesting results about the 
lass PP were obtained. We mean

the result of S.Toda [1℄ that polynomial hierar
hy PH is polynomially Tur-

ing redu
ible to PP and the result that PP is 
losed under polynomial truth

table redu
tions (see [2℄ and [3℄). These results make more interesting to

study PP. Another reason to study PP is that this 
lass has the following

interpretation. Random input r of the probabilisti
 ma
hine M that re
og-

nizes a language L 
an be regarded as a voter and the output M(x; r) of M

on the input word x and random input r 
an be regarded as the opinion of

voter r about whether x is in L. From this point of view PP is the 
lass

of all languages L su
h that membership of x in L 
an be determined via

ele
tion with 2

poly(jxj)

voters, every voter being polynomial time bounded.

In this paper we prove one (simple) positive theorem about PP and one

negative theorem:

Theorem 1. MA � PP.

Theorem 2. AM

A

\ 
o-AM

A

6� PP

A

for some ora
le A.

Theorem 1 is relativizable. Theorem 2 shows that theorem 1 
annot be

strengthened to relativezable in
lusion AM � PP (remember that MA �

AM [4℄). Another meaning of theorem 2 is that Toda's result that PH is

Turing redu
ible to PP 
annot be strengthened to relativizable in
lusion



PH � PP be
ause AM � �

2

[4℄ (note that Toda's proof is relativizable).

From theorems 1 and 2 we 
an dedu
e that AM

A

\ 
o-AM

A

6�MA

A

for

some ora
le A, but the latter result is easier than theorem 2.

2 De�nitions

We'll 
onsider languages over the binary alphabet B = f0; 1g. The set of

all binary words of length n is denoted by B. Fun
tions with binary values

are 
alled predi
ates. Instead of P (x) = 1 where P is a predi
ate we'll write

simply P (x). All Turing ma
hines output 0, 1.

De�nition 1. A language L belongs to PP i� there is a polynomial time

probabilisti
 Turing ma
hineM su
h that x 2 L, Prob[M(x; r) = 1℄ > 1=2

where the probability is taken over the uniform distribution in the set of

random inputs r of M .

Remark. We 
an easily prove that in de�nition 1 the threshold 1=2 may

be repla
ed with any other 
onstant or with any rational number of the

form a(x)=2

s(jxj)

where s is a polynomial and a:B

�

! N is polynomially


omputable fun
tion (integers are written in binary notation).

De�nition 2. L 2 MA i� there are a polynomial p and polynomially


omputable predi
ate Q(x; r; s) su
h that

x 2 L) 9s 2 B

p(jxj)

Prob

r

[Q(x; r; s)℄ > 2=3

x 62 L) 8s 2 B

p(jxj)

Prob

r

[Q(x; r; s)℄ < 1=3;

where probability is taken over uniform distribution in B

p(jxj)

.

De�nition 3. L 2 AM i� there are a polynomial p and polynomial 
om-

putable predi
ate Q(x; r; s) su
h that

x 2 L) Prob[9s 2 B

p(jxj)

Q(x; r; s)℄ > 2=3

x 62 L) Prob[9s 2 B

p(jxj)

Q(x; r; s)℄ < 1=3

where probability is taken over uniform distribution in r 2 B

p(jxj)

.

Theorem [4℄. MA � AM.
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3 Results

Theorem 1. MA � PP.

Proof. Let L 2 MA and let p and Q are 
orrespondingly polynomial and

predi
ate from de�nition 2. Using standard ampli�
ation we 
an 
onstru
t

a new polynomial p

1

and a new polynomially 
omputable predi
ate Q

1

su
h

that

x 2 L) 9s 2 B

p(jxj)

Prob[Q

1

(x; r; s)℄ > 1� 4

�p(jxj)

x 62 L) 8s 2 B

p(jxj)

Prob[Q

1

(x; r; s)℄ > 4

�p(jxj)

where probability is taken over the uniform distribution in r 2 B

p

1

(jxj)

.

Consider now the uniform distribution on pairs hr; si 2 B

p(jxj)+p

1

(x)

. We

have x 2 L)

Prob[Q

1

(x; r; s)℄ > 2

�p(jxj)

(1� 4

�p(jxj)

) > 4

�p(jxj)

and

x 62 L) Prob[Q

1

(x; r; s)℄ < 4

�p(jxj)

:

Using the Remark we get L 2 PP.

Theorem 2. There is an ora
le A su
h that

AM

A

\ 
o-AM

A

6� PP

A

:

Proof. For simpli
ity of notation we'll 
onstru
t an ora
le A su
h that

AM

A

6� PP

A

. The proof 
an be easily transformed into the proof of the

theorem.

Let A be a language and let n 2 N. We will 
onsider the value of A on

the words of length 2n as the matrix of order 2

n

� 2

n

with 
oeÆ
ients 0,

1. Denote this matrix by A

n

. Call A

n

1-goof i� > 2=3 rows of A

n


ontain

at least one 1 and 
all A

n

0-good i� < 1=3 rows of A

n


ontain at least one

1. Call A

n

good if it is 1-good or 0-good. Asso
iate with any ora
le A the

language L(A) = f1

n

j A

n

is 1-goodg. We'll 
onstru
t an ora
le A su
h that

A

n

is good for all n 2 N and L(A) 62 PP

A

. From the former 
ondition we


an easy dedu
e that L(A) 2 AM

A

.

To ensure L(A) 62 PP

A

let us enumerate all polynomial probabilisti


ma
hines and denote i-th ma
hine by PP

i

. De�ne for beginning A in su
h

a way that A

n

is good for all n 2 N. We will perform steps with numbers 0,

1, 2; : : :. On the i-th step we'll ensure that L(A) di�ers from the language

3



re
ognized by PP

A

i

. To this end we will 
hange the value of A on �nite

number of words in su
h a way that for some n 2 N holds

1

n

2 L(A) 6, Prob[PP

A

i

(1

n

; r) = 1℄ > 1=2 (1)

After 
hanging we will �x the value of A on all words whi
h the truth value

of (1) depends on. This means that on later steps we will not 
hange the

value of A on these words.

Let us des
ribe i-th step. Choose n su
h that no value of A (the ora
le


onstru
ted on (i�1)th step) on words with length 2n is �xed and suÆ
iently

large (how large must be n we'll see in the end of the proof). Denote by M

n

the set of all 0{1-matri
es of order 2

n

� 2

n

. If B 2M

n

then denote by A[B℄

the ora
le obtained from A by repla
ing A

n

with B. Let us prove that there

is a good B 2 M

n

su
h that for A[B℄ holds (1). Suppose the 
ontrary: for

all good B 2M

n

B is 1-good , Prob[PP

A[B℄

i

(1

n

; r) = 1℄ > 1=2 (2)

We'll dedu
e a 
ontradi
tion. Denote for brevity PP

A[B℄

i

(1

n

; r) by P (B; r).

We'll 
onstru
t two probability distributions �, � on M

n

su
h that the

matrix B taken at random with respe
t to � with high probability is 1-good

and the matrix B taken at random with respe
t to � with high probability

is 0-good. More pre
isely � and � will satisfy

Prob

�

[B is 1-good℄ > 1� 2

�h(n)

(3)

Prob

�

[B is 0-good℄ > 1� 2

�h(n)

(4)

where h(n) grows superpolynomially.

Let us denote by E

�

, E

�

, and E 
orrespondingly the average with respe
t

to distributions �, � and uniform distribution in the set of r's. Let us prove

that (3) and (4) yield

E

�

EP (B; r) > E

�

EP (B; r) (5)

Indeed if � will be 
on
entrated only on 1-good matri
es, we would have

E

�

EP (B; r) > E

�

1

2

=

1

2

and more pre
isely E

�

EP (B; r) �

1

2

+ 2

�poly(n)

. If

� will be 
on
entrated only on 0-good matri
es we would have E

�

EP (B; r) <

1

2

. As the gap 2

�poly(n)

is less than 2

�h(n)

we see that for suÆ
iently large

n, (5) follows from (3) and (4). On the other hand, � and � will be su
h

that

E

�

P (B; r) = E

�

P (B; r) for all r: (6)
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Evidently this 
ontradi
ts (5).

Distribution � and � will be 
onstru
ted as follows. Let � be some proba-

bility distribution in the segment [0; 1℄. Let us asso
iate with � a probability

distribution in M

n

denoted by �(�). A random matrix B with respe
t to

�(�) is generated as follows. Pi
k independently random p

1

; : : : ; p

2

n

in [0; 1℄

with respe
t to �. Then for ea
h j � 2

n

take j-th row of B as the sequen
e

of 2

n

Bernoulli tests with probability of 1 equal to p

j

. More formally, for

any matrix (


jl

) 2M

n

Prob

�(�)

[B = (


jl

)℄ =

2

n

Y

j=1

(

Z

1

0

(

2

n

Y

l=1

x




jl

j

) d�(x

j

))

where x

0

= 1� x, x

1

= x.

Let us denote by k the maximal number of queries whi
h ma
hine PP

i

makes to ora
le on inputs of the form 1

n

; r. Note that k � poly(n). Consider

the �rst k moments of �:

m

1

(�) =

Z

1

0

x d�(x); m

2

(�) =

Z

1

0

x

2

d�(x); : : : ;

m

k

(�) =

Z

1

0

x

k

d�(x):

We 
laim that for all r, E

�(�)

P (B; r) is a polynomial in m

1

(�), m

2

(�),

: : : ;m

k

(�) (the 
oeÆ
ients of this polynomial depend only on PP

i

, n and

r).

Let us prove this 
laim. Remember that P (B; r) = PP

A[B℄

i

(1

n

; r). Let

us �x some B 2 M

n

and simulate the work of PP

i

on 1

n

; r with ora
le

A[B℄. Let us write down the questions to B (i.e. the questions of length

2n to the ora
le) made during this work and also the answers. Denote by

u

1

; : : : ; u

k

the questions and by b

1

; : : : ; b

k

the answers (thus u

1

; : : : ; u

k

2 B

2n

,

b

1

; : : : ; b

k

2 B). Let us 
all the sequen
e (u

1

; : : : ; u

k

; b

1

; : : : ; b

k

) the proto
ol

on B and denote it by Prot(B). Denote also

Prot = fProt(B) j B 2M

n

; P (B; r) = 1g:

Obviously

Prot(B

1

) = Prot(B

2

)) P (B

1

; r) = P (B

2

; r):

Therefore we have

E

�(�)

P (B; r) =

X

v2Prot

Prob

�(�)

[Prot(B) = v℄:
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Thus it suÆ
es to prove that for every v 2 Prot, Prob

�(�)

[Prot(B) = v℄

is a polynomial in m

1

(�), m

2

(�), : : : ;m

k

(�). Let us �x some v 2 Prot,

v = (u

1

; : : : ; u

k

; b

1

; : : : ; b

k

). Evidently

Prob

�(�)

[Prot(B) = v℄ =

= Prob

�(�)

[B(u

i

) = b

i

; i = 1; : : : ; k℄:

Remember that ea
h u

i

is 
onsidered to be a pair of numbers of a row and a


olumn in B, denote the number of the row by l

i

. Denote for ea
h s � 2

n

by




s

the number of di�erent u

i

, i = 1; : : : ; k su
h that l

i

= s

i

and b

i

= 1 and

by d

s

the number of di�erent u

i

, i = 1; : : : ; k su
h that l

i

= s

i

and b

i

= 0.

Then

Prob

�(�)

[Prot(B) = v℄ =

2

n

Y

s=1

Z

1

0

x




s

(1� x)

d

s

d�(x):

Evidently,

R

1

0

x




s

(1�x)

d

s

d�(x) is a linear 
ombination ofm

r

(�) =

R

1

0

x

r

d�(x),

r = 0; 1; : : : ; k (be
ause 


s

+ d

s

� k). Thus the 
laim is proved.

Therefore if we take two probability distributions � and � in [0; 1℄ su
h

that

m

i

(�) = m

i

(�) for i = 1; 2; : : : ; k; (7)

and take � = �(�) and � = �(�) we will get (6). In order to satisfy (3) we'll

take � su
h that

Prob

�

[p � 2

�n+4

℄ �

4

5

(8)

Let us prove that (8) implies (3). Suppose that � satis�es (8). Let B be a

random matrix with respe
t to �(�). Denote by q the probability that a �xed

row of B has only zeros. Obviously, q �

1

5

+

4

5

(1�2

�n+4

)

2

n

�

1

5

+

4

5

e

�16

<

1

4

(for large n). From the Law of large numbers it follows that with probability

1 � 2

�
onst�2

n

the frequen
e of nonzero rows in B is greater than 2=3. In

order to satisfy (4) we will take � = �(�) su
h that

Prob

�

[p = 0℄ �

3

4

: (9)

Let us prove that (9) implies (4). Let � satisfy (9) and let B be a random

matrix with respe
t to �(�). Then the probability q that a �xed row of B

has only zeros is greater than 3=4. Therefore we 
an reason as in above 
ase.

Thus it remains to prove the following lemma.
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Lemma. Let p(n) be a polynomial. Then for all suÆ
iently large n there

are probability distributions � and � in [0; 1℄ satisfying the 
onditions (8),

(9) and (7) for k = p(n).

Proof. We'll de�ne � expli
itly and � impli
itly by using a 
riterion on the

existen
e of a measure in [0; 1℄ with given moments (a measure di�ers from

a probability distribution with that a measure of entire segment [0; 1℄ 
an

be di�erent from 1; thus the probability distribution 
an be de�ned as any

measure � su
h that �([0; 1℄) =

R

1

0

1 � d�(x) = 1).

Let m = (m

0

;m

1

; : : : ;m

k

) be a sequen
e of real numbers. Let a(x) =

P

k

i=0

a

i

x

i

be a polynomial of degree � k. De�ne (m;a(x)) to be equal to

m

0

a

0

+m

1

a

1

+ � � � +m

k

a

k

. The following theorem is due to M.Riesz. In

paper [5℄ this theorem is proved for the in�nite sequen
es of moments and

measures in the set of reals. Riesz' proof is good also in our 
ase. See also

[6℄ (and [7℄ in Russian).

Riesz' theorem. Two following 
onditions are equivalent:

(i) There is a measure � in [0; 1℄ su
h that for all i 2 f0; 1; : : : ; kg,

R

1

0

x

i

d�(x) = m

i

.

(ii) For all polynomials a(x) of degree � k, nonnegative on [0; 1℄, it holds

(m;a(x)) � 0.

If k is even then (ii) is equivalent to the 
ondition

(iii) For all polynomials b(x), 
(x), deg b(x) � k=2, deg 
(x) � k=2 � 1, it

holds (m; b(x)

2

) � 0, (m;x(1� x)
(x)

2

) � 0.

The impli
ation (ii))(iii) is obvious. The impli
ation (i))(ii) is simple

and we'll use its proof in the sequel. Let us prove it. Assume that (i) is true

and let � be a measure satisfying (i). Let a(x) =

P

k

i=0

a

i

x

i

be a polynomial

nonnegative on [0; 1℄. Then

(m;a(x)) =

k

X

i=0

a

i

m

i

=

k

X

i=0

a

i

Z

1

0

x

i

d�(x)

=

Z

1

0

a(x) d�(x) � 0:

For the seek of 
ompleteness we'll also prove that (iii))(ii) and (ii))(i) in

the Appendix.
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Our plan is as follows. We'll de�ne a probability distribution � on [0; 1℄

su
h that

Z

1

0

b(x)

2

d�(x) �

3

4

b(0)

2

for all polynomials (10)

b(x) with degree � k=2:

Then we'll de�ne the sequen
e m = (m

0

; : : : ;m

k

) by equalities m

0

= 1=4,

m

1

= m

1

(�), : : :, m

k

= m

k

(�).

This sequen
e m satis�es (iii) be
ause if b(x) has degree �

k

2

then

(m; b(x)

2

) =

R

1

0

b(x)

2

d�(x)�

3

4

b(0)

2

� 0 (be
ause m

0

=

1

4

= m

0

(�)�

3

4

) and

if 
(x) has degree �

k

2

� 1 then

(m;x(1� x)
(x)

2

) =

Z

1

0

x(1� x)
(x)

2

d�(x) � 0

(be
ause the polynomial x(1� x)
(x)

2

has no 
onstant term).

By Riesz' theorem there is a measure � in [0; 1℄ su
h that m

0

(�) =

R

1

0

1 d�(x) =

1

4

and for all i 2 f1; 2; : : : ; kg,m

i

(�) =

R

1

0

x

i

d�(x) =

R

1

0

x

i

d�(x) =

m

i

(�). Let g

�

(x) be distribution fun
tion of �, i.e. g

�

(x) = �([0; x℄). Con-

sider the fun
tion f(x) =

3

4

+ g

�

(x). Then f(x) is the distribution fun
tion

of some probability distribution � in [0; 1℄.

Evidently � satis�es the required 
onditions.

Thus it remains to 
onstru
t � su
h that (8) and (10) hold. Let us denote

for brevity 2

�n+4

by �. Let us de�ne � by equalities Prob

�

[p = �℄ = 4=5

and if A � [0; 1℄nf�g then Prob

�

[p 2 A℄ =

1

5

R

x2A

�(x) dx where �(x) =




1

p

1�(1�2x)

2

and 


1

is 
hosen in su
h a way that

R

1

0

�(x) dx = 1. In other

words, � is the probability distribution su
h that for allA � [0; 1℄ Prob

�

[p 2 A℄ =

4

5

�

A

(�)+

1

5

R

1

0

�

A

(x)�(x) dx, where �

A

stands for the 
hara
teristi
 fun
tion

of A.

Evidently (8) is true.

Let us prove (10). Let b(x) be a polynomial of degree � k=2. Then

R

1

0

b(x)

2

d�(x) =

4

5

b(�)

2

+

1

5

R

1

0

b(x)

2

�(x) dx. We 
laim that either

4

5

b(�)

2

or

1

5

R

1

0

b(x)

2

�(x) dx is greater than

3

4

b(0)

2

(for suÆ
iently large n). Indeed,

assume that

1

5

R

1

0

b(x)

2

�(x) dx �

3

4

b(0)

2

that is

Z

1

0

�

b(x)

b(0)

�

2

�(x) dx �

15

4

Let us prove that

4

5

b(�)

2

�

3

4

b(0)

2

. In fa
t, we'll prove that

b(�)

b(0)

is

exponentially 
lose to 1. Let us substitute 1�2x = y for 
onvenien
e. Then
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we have

Z

1

�1

d(y)

2


(y) dy �

15

2

; (11)

where d(y) =

b(

1�y

2

)

b(0)

, 
(y) =




1

p

1�y

2

. Thus we have to prove that d(1 � 2�)

is 
lose to d(1) = 1. Let m = k=2 and T

0

(x), T

1

(x), : : : ; T

m

(x) be (m + 1)

�rst Chebyshev's polynomials, i.e. T

i

(
os t) = 
os it for all t 2 [0; �℄. The

density �(x) is 
hosen in su
h a way that T

i

(y) are orthogonal with density


(y), moreover they are almost orthonormal:

R

1

�1

T

i

(y)T

j

(y)
(y) dy is equal

to 0 if i 6= j, is equal to 


2

if i = j 6= 0 and is equal to 


3

if i = j = 0 where




2

, 


3

are some positive 
onstants. It is well known that the polynomials

T

0

, T

1

, : : : ; T

m

form a basis in the spa
e of all polynomials of degree � m.

Let d

0

; : : : ; d

m

be the 
oeÆ
ients of the polynomial d(y) in this basis. Then

(11) yields that

R

1

�1

(

P

m

i=0

d

i

T

i

(y))

2


(y) dy =

P

m

i=0

d

2

i

R

1

�1

T

i

(y)

2


(y) dy �

15

2

.

Hen
e for some 
onstant 


4

we have jd

0

j; : : : ; jd

m

j � 


4

. Let us dedu
e from

this that jd(1 � 2�) � d(1)j is small. Let us denote 2� by �. We have

jd(1 � �)� d(1)j �

P

m

i=0

jd

i

jjT

i

(1� �)� T

i

(1)j.

We 
laim that jT

i

(1��)�T

i

(1)j = i

2

�(1+o(1)) as i

2

� ! 0. Suppose that

this is already proved. Then for suÆ
iently large n we have jd(1��)�d(1)j �

(m+ 1) � 


4

�m

2

� � � 2. Therefore

jd(1� �)� d(1)j � poly(n)2

�n+4

:

Hen
e

b(�)

b(0)

= d(1� �) � 1� poly(n)2

�n+4

�

99

100

for suÆ
iently large n.

Thus it remains to prove that T

i

(1��)�T

i

(1) = i

2

�(1+o(1)) as i

2

� ! 0.

Let � 2 [0; �℄ be de�ned by equality 
os� = 1��. Then � =

�

2

2

(1+o(1))

as � ! 0. Hen
e

T

i

(1� �) = T

i

(
os�) = 
os i� = 1�

�

2

i

2

2

(1 + o(1)) =

1� i

2

�(1 + o(1)) = T

i

(1)� i

2

�(1 + o(1)):

This 
ompletes the proof of the lemma.
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4 Appendix

1. Proof of impli
ation (ii))(i) in Riesz' theorem.

Assume that (ii) is true. Let us enumerate q

1

; q

2

; : : : all rational numbers

from [0; 1℄ and de�ne r

i

(x) to be a fun
tion on [0; 1℄ su
h that r

i

(x) is equal

to 0 if 0 � x � q

i

and equal to 1 if q

i

< x � 1. Consider the linear spa
e L

over R 
onsisting of all fun
tions f(x) on [0; 1℄ of the form

f(x) =

X

i2I

s

i

r

i

(x) + a(x) (12)

where I is a �nite set of natural numbers, s

i

2 R and a(x) is a polynomial

with degree � k. Let K be the set of all f 2 L su
h that f is nonnegative

on [0; 1℄.

Claim. There is a linear fun
tional l de�ned on L su
h that l is nonnegative

on K and l(a(x)) = (m;a(x)) for all polynomials a(x) of degree � k.

Proof of the 
laim. Let us de�ne L

i

to be the set of all fun
tions f(x) of the

form (12) with I = f1; 2; : : : ; ig and de�ne l

0

to be the fun
tional de�ned

on L

0

(the set of all polynomials of degree � k) as l

0

(a(x)) = (m;a(x)).

Then (ii) means that l

0

is nonnegative on K \L

0

. Using the indu
tion we'll

prove that there is a sequen
e l

0

; l

1

; l

2

: : : of linear fun
tionals su
h that l

i

is

de�ned on L

i

, is nonnegative on L

i

\K and extends l

i�1

. Then as l we 
an

take the union of all l

i

, i 2N.

Let the fun
tional l

i

be already de�ned and nonnegative on L

i

\ K.

Obviously we have to de�ne the value of l

i+1

only on r

i+1

(x). Suppose

that this value is equal to v. One 
an easily verify that in this 
ase l

i+1

is

nonnegative on L

i+1

\K i� v satis�es two 
onditions

(a) v � l

i

(f(x)) for all f(x) 2 L

i

su
h that

r

i+1

(x) � f(x) for all x 2 [0; 1℄,

(b) l

i

(g(x)) � v for all g(x) 2 L

i

su
h that

r

i+1

(x) � g(x) for all x 2 [0; 1℄.

Let us prove that there is v 2 R satisfying (a) and (b). Let us denote

A = fl

i

(f(x)) j f(x) 2 L

i

; 8x 2 [0; 1℄ r

i+1

(x) � f(x)g

B = fl

i

(g(x)) j g(x) 2 L

i

; 8x 2 [0; 1℄ g(x) � r

i+1

(x)g

10



Evidently it is suÆ
ient to prove that A 6= ;, B 6= ; and 8v

1

2 A 8v

2

2 B

v

1

� v

2

.

As r

i+1

(x) is bounded and L

0


ontains all 
onstant fun
tions, we have

A 6= ;, B 6= ;. If v

1

2 A, v

1

= l

i

(f(x)) and v

2

2 B, v

2

= l

i

(g(x)), then

(f(x)� g(x)) 2 K therefore v

1

= l

i

(f(x)) � l

i

(g(x)) = v

2

.

The 
laim is proved.

Now let us 
onsider the fun
tion g de�ned on [0; 1℄ by g(x) = supfl(r

i

) j

q

i

� x; i 2 Ng. We 
an easily prove that g(x) is monotone and 
ontinuous

from the right (lim

y!x+0

g(y) = g(x)). Hen
e g is the distribution fun
tion

for some measure � in [0; 1℄, i.e. there is a measure � in [0; 1℄ su
h that

�([0; x℄) = g(x) for all x 2 [0; 1℄. Obviously for all i,

R

1

0

r

i

(x) d�(x) =

l(r

i

(x)). From this and the nonnegativeness of l on K we 
an easily dedu
e

that

R

1

0

x

i

d�(x) = l(x

i

) = m

i

for all i 2 f0; 1; : : : ; kg.

2. Proof of impli
ation (iii))(ii) in Riesz' theorem. This impli
ation

easily follows from the fa
t that for even k every polynomial of degree � k

whi
h is nonnegative on [0; 1℄ has the form a(x)

2

+ x(1 � x)b(x)

2

where

deg a(x) � k=2, deg b(x) � k=2� 1. The latter fa
t in turn follows from the

fa
t that ea
h polynomial nonnegative on the set fy 2 R j y � 0g has the

form p(y)

2

+yq(y)

2

. Indeed, suppose that the latter assertion is true and 
(x)

is a polynomial with degree � k nonnegative on [0; 1℄. Then the polynomial


(

y

1+y

)(1+y)

k

is nonnegative on [0;+1[ therefore for some polynomials p(y)

and q(y) it holds 
(

y

1+y

)(1 + y)

k

= p(y)

2

+ yq(y)

2

. Evidently deg p � k=2,

deg q � k=2 � 1. Substituting y =

x

1�x

we get 
(x) = p(

x

1�x

)

2

(1 � x)

k

+

x(1� x)

k�1

q(

x

1�x

)

2

. Evidently

a(x) = p(

x

1� x

)(1� x)

k=2

and

b(x) = q(

x

1� x

)(1� x)

k=2�1

are polynomials of degrees 
orrespondingly � k=2 and � k=2 � 1. Thus

it remains to prove that every polynomial r(y) whi
h is nonnegative on

[0;+1[ has the form r(y) = p(y)

2

+ yq(y)

2

. Let us de�ne P to be the set of

all polynomials having su
h form.

Let r(y) is nonnegative on [0;+1[. Obviously, it is suÆ
ient to prove

two assertions: (a) r(y) 
an be represented as the produ
t of polynomials

from P and (b) if r

1

(y) 2 P and r

2

(y) 2 P then r

1

(y) � r

2

(y) 2 P . Let us

de
ompose r(y) into the produ
t of polynomials irredu
ible over R

r(y) = A � (y + a

1

)

i

1

� � � (y + a

n

)

i

n

�
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�(y

2

+ b

1

y + 


1

)

j

1

� � � (y

2

+ b

m

y + 


m

)

j

m

Evidently A > 0. Let us take arbitrary k � n. Then a

k

� 0 or i

k

is even.

If a

k

� 0 then y + a

k

2 P as y + a

k

= (

p

a

k

)

2

+ y � 1

2

. If i

k

is even then

(y + a

k

)

i

k

2 P . Let us take arbitrary k � m. Obviously 


k

> 0 be
ause

s(y) = y

2

+b

k

y+


k

is irredu
ible. We have s(y) = (y�

p




k

)

2

+y(2

p




k

+b

k

).

Sin
e s(y) is irredu
ible, we have s(

p




k

) =

p




k

(2

p




k

+ b

k

) � 0 therefore

s(y) 2 P .

The assertion (b) follows from the equality

(p(y)

2

+ yq(y)

2

)(s(y)

2

+ yt(y)

2

) =

= (p(y)s(y)� yq(y)t(y))

2

+ y(p(y)t(y) + q(y)s(y))

2

:

A
knowledgments

The author is sin
erely grateful to Vladimir Borisenko, Frederi
 Green, Lane

Hema
handra, Andrey Mu
hnik, Alexander Razborov, Alexander Shen and

Yuri Nikolaevi
h Tyurin.

Referen
es

[1℄ S.Toda, \On the 
omputational power of PP and ℄P". Pro
. of 30th

Symp. on Found. of Comp. S
i. (1989), pp.514{519.

[2℄ R.Beigel, N.Reingold and D.Spielman, \PP is 
losed under interse
tion".

Pro
. of 23rd ACM Symp. on Th. of Comp. (1991), pp.1-9.

[3℄ L.Fortnow, N.Reingold. \PP is 
losed under truth table redu
tions." 6th

IEEE Conf. on Stru
ture in Complexity Theory, 1991, pp.13-15.

[4℄ L.Babai, \Trading group theory for randomness". Pro
. 17th ACM

Symp. on Theory of Comp. (1985), pp.421-429.

[5℄ M.Riesz. Sur le probl�eme des moments. Troisieme Note. Arkiv f�or mat.,

astr. o
h fys., 1923, v.17.

[6℄ R.Riesz et B.Sz.-Nagy. Le
ons d'analyse fun
tionelle. Akademiai Kiado,

Budapest 1972, 6th ed. (There are English and Russian translations.)

[7℄ A.I.Akhiezer. The 
lassi
al problem of moments and some related topi
s

in 
al
ulus. Mos
ow, Fizmatgiz, 1961. (Russian.)

12


