
Filtration via Bisimulation
Valentin Shehtman

abstract. We develop a new version of the well-known
filtration method in modal logic, allowing us to construct large
countermodels and to solve some open problems on the finite
model property for products of modal logics. This filtration is
based on the bisimilarity relation between parts of the original
model; it generalizes earlier versions of the filtration method
introduced by E. Lemmon, K. Segerberg, D. Gabbay, and the
author.

1 Introduction

The filtration method is the oldest and the most well-known method
of finite model property proofs in modal logic. First developed in the
1960s by S. Kripke, E. Lemmon, K. Segerberg, and D. Gabbay, it
was afterwards modified and successfully applied to different types of
nonclassical logics.

However, in the field of many-dimensional modal logic, the tradi-
tional filtration method is not very popular in decidability proofs.
Indeed, decidable many-dimensional logics may be of high complex-
ity, but standard filtrations yield rather moderate upper complexity
bounds. Other methods seem to be more successful here, like the
method of quasimodels (or mosaics), which is widely used in the re-
cent monograph [4].

Still, traditional filtrations seem so simple, that it is worth making
them work for complex logics as well. In this paper we propose such
a modification allowing us to simplify some earlier proofs and also
to prove new fmp results — for example, for the logic K × S4 and
related ones. So we hope for further applications of this method.

Let us briefly describe the main idea. A filtration constructs a finite
Kripke model, which is in some sense equivalent to a given infinite
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model. There are two main types of filtrations: selective filtrations
(Kripke – Gabbay) and “epi-filtrations” (Lemmon – Segerberg). Se-
lective filtrations extracting finite submodels, are not discussed here,
details can be found in [3], for a more recent application cf. [10].

An epi-filtration identifies possible worlds by some “faithful” equiv-
alence relation. In the simplest case [8], given a set of formulas Ψ,
the equivalence ≡Ψ is defined as the truth of the same formulas from
Ψ. If Ψ is finite, we readily obtain a finite model, but the validity of
the original logic may be lost. To avoid this, we can try to refine the
equivalence relation.

The first modification of this kind was proposed in [2]: the new
relation is ≡Φ for some Φ ⊇ Ψ. Our modification is based on a
more general construction from [9], [5]. We start from a finite set
Ψ and a Kripke model M = (W,R1, ..., Rn, θ). The worlds of M
are identified by equivalence relation ≈ ⊆ ≡Ψ with finitely many
equivalence classes. An appropriate choice of ≈ allows us to preserve
the original logic in the filtrated frame.

In [5] this method is applied to the logic S5 × K. In this case
every R1(x) is a cluster; we put x ≈ y iff x ≡Ψ y and the same
≡Ψ-classes are presented in R1(x) and R1(y). But such a definition
is no good if R1 is not an equivalence (e.g. for the logic K × K),
because x ≈ y should somehow take the original R1 into account.
So we require that the corresponding generated R1-submodels are
bisimilar. To obtain finitely many ≈-classes, one should first restrict
the depth of all these submodels. This step is crucial for the whole
proof and it is not always possible. In fact, the method works quite
well for intransitive R1, but it may fail when all relations in M are
transitive. For example, this happens for the logic K4 × K4, which
lacks the fmp at all [7].

2 Basic definitions and facts

First let us recall some well-known material. Our terminology and no-
tation mainly follow [5]. Ln denotes the set of propositional formulas
built from a countable set PL = {p1, p2, . . . } of proposition letters,
classical connectives →,⊥, and modal connectives !1, . . . ,!n. Let
Ln(k be the set of all formulas in Ln using only proposition letters
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from the set PL(k = {p1, p2, . . . pk}. Closed formulas do not contain
proposition letters.

As usual, an n-modal logic is a set of Ln-formulas containing the
classical tautologies, the axiom !(p1 → p2) → (!p1 → !p2), closed
under Substitution, Modus Ponens, and Necessitation (A/!iA), 1 ≤
i ≤ n. For a set of Ln-formulas Γ and an n-modal logic Λ, the
smallest n-modal logic containing

(Λ ∪ Γ) is denoted by Λ + Γ. Kn denotes the minimal n-modal
logic, and

K±n := K2n + {♦i!n+ip → p, ♦n+i!ip → p | 1 ≤ i ≤ n}

is the minimal n-temporal logic1; in the latter case !n+i is denoted
by !−1

i ; similarly for ♦.
Recall that the fusion of two logics, n-modal L1 and m-modal L2

is L1 ∗ L2 := Kn+m + L1 + L+n
2 , where L+n

2 is obtained from L2 by
replacing every occurrence of any !j with !j+n.

Kripke semantics is defined in a standard way. An n-modal (Kripke)
frame is a tuple F = (W,R1, . . . , Rn), where W ,= ∅ is a set of possi-
ble worlds, Ri ⊆ W × W are accessibility relations. A Kripke model
over F is a pair M = (F, θ), where θ : PL −→ 2W is a valuation.

Valuations are extended to all formulas as usual:
θ(⊥) = ∅, θ(A → B) = (W − θ(A)) ∪ θ(B),
θ(!iA) = {x | Ri(x) ⊆ θ(A)}.
Similarly, a k-restricted Kripke model is M = (F, θ), where θ :

PL(k −→ 2W ; in this case θ is extended to Ln(k. A formula A
is called true at a world w of M if w ∈ θ(A) (in another notation:
M,w # A). Since the truth value of a formula depends only on
proposition letters occurring in it, we may fix k and assume that all
Kripke models are k-restricted.

A formula A is valid in a frame F (notation: F # A) if it is true
at every world of every Kripke model over F. A set of formulas Γ is
valid in F (notation: F # Γ) if every A ∈ Γ is valid. In the latter
case we also say that F is a Γ-frame. A logic Λ is determined by a
class of frames C if Λ is the set of all formulas valid in all frames from
C.

1K±1 is the well known logic K.t.
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DEFINITION 1. Let F = (W,R1, . . . , Rn) be a frame, u, v ∈ W , m ≥
1. A path of length m from u to v is a sequence (u0, j0, u1, . . . , jm−1, um)
such that u = u0, v = um and for all i < m, uiRjiui+1. A singleton
sequence (u) is the path of length 0 (from u to u ). Recall that the
subframe of F generated by u (notation: F u) is the restriction of F
to the set of all v such that there exists a path from u to v; similarly
a generated Kripke submodel Mu is defined.

DEFINITION 2. A tree with root u is a frame F such that F = F u

and for every v ∈ F there exists a unique path from u to v. The
length of this path is called the height of v and denoted by h(v). The
height of F (h(F )) is the maximal h(v) (if it exists), or ∞ otherwise.

DEFINITION 3. For a 2n-modal tree G = (W,S1, . . . , S2n), the
frame F = (W,R1, . . . , Rn, R−1

1 , . . . , R−1
n ), where Ri = Si ∪ S−1

n+i, is
called the n-temporal tree (with the pattern G). The height function
in F is then defined as the height function in G.

Speaking informally, a temporal tree is a modal tree, in which some
of the arrows are inverted.

DEFINITION 4. A 1-tree (W,$) is called standard if its worlds are
(some) finite sequences of natural numbers, its root is the void se-
quence λ and α $ β iff β is obtained by adding a single element at
the end of α. An n-tree (W,R1, . . . , Rn) is called standard if the 1-tree
(W,R1 ∪ · · ·∪Rn) is standard. An n-temporal tree is called standard
if its pattern is standard.

DEFINITION 5. Let M = (W,R1, . . . , Rn, θ) be an n-modal Kripke
model, Ψ a set of n-modal formulas closed under subformulas. For
x ∈ W let Ψ(x) := {A ∈ Ψ | M,x # A}. Two worlds x, y ∈ W are

called Ψ-equivalent in M (notation: (M,x) ≡Ψ (M,y), or just
x ≡Ψ y) if Ψ(x) = Ψ(y).

DEFINITION 6. (cf. [5]) Under the assumptions of Definition 5, let
≈ be an equivalence relation on W . Let x∼ denote the ≈-class of x.
A Kripke model M ′ = (W ′, R′

1, ..., R
′
n, θ′) is called a filtration of M

through Ψ,≈ if for any x, y ∈ W , for any formula A, 1 ≤ i ≤ n:

(f1) ≈ ⊆ ≡Ψ;

(f2) W ′ = W/ ≈;
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(f3) xRiy =⇒ x∼R′
iy

∼;

(f4) x∼R′
iy

∼ & M,x # !iA & !iA ∈ Ψ =⇒ M,y # A;

(f5) if q ∈ Ψ ∩ PL, then M,x # q ⇐⇒ M ′, x∼ # q.2

LEMMA 7. (Filtration Lemma). Let M ′ be a filtration of M through
Ψ,≈. Then for any x ∈ W, for any A ∈ Ψ

M,x # A iff M ′, x∼ # A.

Proof. Standard, by induction on the length of A, cf. [5], [9]. In the
case A = !iB use (f3) for ‘if’ and (f4) for ‘only if’. %

LEMMA 8. Let M = (W,R1, . . . , Rn, θ), Ψ be the same as in Defi-
nition 5, ≈ an equivalence relation on W such that ≈ ⊆ ≡Ψ; and let
W ′ = W/ ≈. Then the model M = (W ′, R1, . . . , Rn, θ′) such that

• for any x, y ∈ W, x∼Riy
∼ iff ∃x1 ∈ x∼∃y1 ∈ y∼ x1Riy1;

• for any q ∈ Ψ ∩ PL, θ′(q) = {x∼ | M,x # q}

is a filtration of M through Ψ,≈ (the least filtration).

Proof. Also standard; cf. [5], [9]. (f5) follows from the definition of
θ′. To check (f4), assume x # !iA, !iA ∈ Ψ, x∼R′

iy
∼. Then x1Riy1

for some x1 ≈ x, y1 ≈ y, and thus x1 # !iA, y1 # A, and hence
y # A. %

DEFINITION 9. Let J be a finite set of positive integers. A binary
relation R is called J-quasitransitive if Rj+1 ⊆ R for any j ∈ J .

LEMMA 10. For any binary relation R, the smallest J-quasitransitive
relation containing R (the J-quasitransitive closure) is R+ :=

⋃
h∈H

Rh+1,

where H is the additive closure of J ∪ {0} in ω.

Proof. Assume that R ⊆ S and S is J-quasitransitive. Let H0 = {h |
Rh+1 ⊆ S}, then obviously, 0 ∈ H0. Next, assume h ∈ H0, j ∈ J .

2[5] contains misprints in this item.



6 Valentin Shehtman

Then (h+j) ∈ H0; in fact, Rh+j+1 = Rh+1◦Rj ⊆ S ◦Rj ⊆ Sj+1 ⊆ S.
Therefore H ⊆ H0, which readily implies R+ ⊆ S.

It remains to show that R+ is J-quasitransitive. So let us check
that (R+)j+1 ⊆ R+ for j ∈ J . Assume x(R+)j+1y; then x(Rh1+1 ◦
· · · ◦ Rhj+1+1)y for some h1, . . . , hj+1 ∈ H. But this means
xRh1+···+hj+1+j+1y, while (h1 + · · · + hj+1 + j) ∈ H (remember that
J ⊆ H and H is additive closed). Hence xR+y. %

Remark. R+ is a particular case of Horn closure, cf. [5].

LEMMA 11. (cf. [5]) 3 Let M , Ψ be the same as in Definition 5,
and suppose that Ri is Ji-quasitransitive for 1 ≤ i ≤ n. Also let

Φ ⊇ Ψ ∪ {!j
iC | 1 ≤ i ≤ n, Ji ,= ∅, 1 ≤ j ≤ max (Ji), !iC ∈ Ψ},

be a set of formulas closed under subformulas, and let
M := (W ′, R1, . . . , Rn, θ′) be the least filtration of M through Φ,≈.
If R′

i = (Ri)+ is the Ji-quasitransitive closure of Ri, then M ′ :=
(W ′, R′

1, . . . , R
′
n, θ′), is a filtration of M through Ψ,≈. Moreover, if

Ri is reflexive (respectively, symmetric), then R′
i also is.

Proof. Obviously, ≈⊆≡Φ ⊆≡Ψ. Since (f3), (f5) hold for M , they
also hold for M ′ (note that Ri ⊆ R′

i). So let us check (f4) for R′
i,

provided Ji ,= ∅. To simplify notation, we drop the subscript i.
Assume x∼R′y∼, x # !A, !A ∈ Ψ. Let H be the additive closure

of J ∪ {0}, and let us show that for any h ∈ H
(∗) x∼Rhy∼ implies y # !A.
One can argue by induction on the number r of summands in the

representation h = j1 + · · ·+ jr, with j1, . . . , jr ∈ J , and it suffices to
prove that

(∗∗) y # !A & j ∈ J & y∼Rjz∼ implies z # !A.
So assume y # !A, y∼Rjz∼. Then we have y ≈ y0Rz1 ≈ y1R . . .
yj−1Rzj ≈ z, and thus y0 # !A (since ≈⊆≡Ψ and !A ∈ Ψ),

y0 # !j+1A (since R is J-quasitransitive), z0 # !jA, y1 # !jA
(since ≈⊆≡Φ, !jA ∈ Φ), z1 # !j−1A, y2 # !j−1A (since !j−1A ∈
Φ), . . . , yj−1 # !2A, zj # !A, and finally z # !A. This proves (**).

3But again there are misprints in the definition of Φ in [5], p. 123.
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...
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R R

y∼ z∼

y0 z1

y1 z2

yj−1 zj

Figure 1.

Now, given x # !A, !A ∈ Ψ, x∼R′y∼, we have x∼Rhz∼Ry∼ for
some z and some h ∈ H. By (*), we obtain z # !A, and since (f4)
holds for R, this implies y # A.

If Ri is reflexive (respectively, symmetric), then obviously, Ri is re-
flexive (respectively, symmetric), and thus R′

i =
⋃

h∈H
Rh+1

i is reflexive

(symmetric) as well. %

3 Filtration via bisimulation

DEFINITION 12. A bisimulation between Kripke models
M = (W,R1, ..., Rn, θ), N = (V, S1, ..., Sn, η) is a relation E ⊆ W ×V
with the following properties:

• pr1(E) = W ;

• pr2(E) = V ;

• E ◦ Si ⊆ Ri ◦ E for 1 ≤ i ≤ n;

• R−1
i ◦ E ⊆ E ◦ S−1

i for 1 ≤ i ≤ n;

• if xEy, then for any q ∈ PL(k, M,x # q iff N, y # q.

E : M,x 6 N, y denotes that E is a bisimulation between M and
N such that xEy. Two worlds x ∈ M , y ∈ N are called bisimilar
(notation: M,x 6 N, y) if there exists a bisimulation E : M,x 6 N, y.

If a bisimulation E is a function, it is a p-morphism from M onto
N . In this case the condition R−1

i ◦E ⊆ E ◦S−1
i is the monotonicity:

xRiy =⇒ E(x)SiE(y), and E ◦ Si ⊆ Ri ◦ E is the lift property:
E(x)Siz =⇒ ∃y (xRiy & E(y) = z).
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It follows easily from the definition that bisimilarity is an equiva-
lence relation. The following Bisimulation Lemma is well-known:

LEMMA 13. Bisimulations preserve truth values of formulas, i.e.,
M,x 6 N, y implies M,x # A iff N, y # A for any formula A ∈

Ln(k.

Proof. Cf. [1], Theorem 2.20. %

DEFINITION 14. Let M = (W,R1, . . . , Rn, S1, . . . , Sm, θ) be a Kripke
model, Ψ a set of formulas closed under subformulas. For x ∈ W the
model x ↑:= (W,R1, . . . , Rn, R−1

1 , . . . , R−1
n , θ)x (cf. Definition 1) is

called the n-trace of x. Put x ≈ y iff there exists E : x ↑, x 6 y ↑, y
such that E ⊆≡Ψ (bisimilarity modulo Ψ with respect to R1, . . . , Rn).

Note that x↑ is 2n-modal; the use of R−1
i is essential for Lemma 15

below. It follows that ≈ is an equivalence relation. In fact, reflexivity
and symmetry are obvious. For transitivity, note that E1 : x ↑, x 6
y ↑, y and E2 : y ↑, y 6 z ↑, z imply (E1 ◦ E2) : x ↑, x 6 z ↑, z; this is
checked in a straightforward way: E1◦E2◦Ri = E1◦Ri◦E2 = Ri◦E1◦
E2, and the same for R−1

i ; we also have E1◦E2 ⊆ (≡Ψ)◦(≡Ψ) = (≡Ψ).
By definition, ≈ ⊆ ≡Ψ, and thus we can consider filtrations based on
≈.

LEMMA 15. Under the conditions of Definition 14, for any i ≤ n,
≈ ◦Ri = Ri◦ ≈.

Proof. First let us show that ≈ ◦Ri ⊆ Ri◦ ≈. Assume x ≈ yRiz.
Then x, y are equivalent modulo Ψ and there exists E : x↑, x 6 y↑, y
such that E ⊆≡Ψ. So x(E ◦Ri)z, and thus x(Ri ◦E)z, i.e., xRiuEz
for some u. Since u↑= x↑ and y ↑= z ↑, the same E yields u ≈ z. In
a similar way it follows that ≈ ◦R−1

i ⊆ R−1
i ◦ ≈, or Ri◦ ≈⊆≈ ◦Ri.

%

Hence we obtain filtrations preserving some commutation proper-
ties.

LEMMA 16. Let ≈ be the bisimilarity modulo Ψ as in Definition 14.
Then for the least filtration of M through Ψ,≈ we have

(1) Sj ◦ Ri ⊆ Ri ◦ Sj =⇒ Sj ◦ Ri ⊆ Ri ◦ Sj ;
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Figure 2.

(2) Ri ◦ Sj ⊆ Sj ◦ Ri =⇒ Ri ◦ Sj ⊆ Sj ◦ Ri;

(3) R−1
i ◦ Sj ⊆ Sj ◦ R−1

i =⇒ R−1
i ◦ Sj ⊆ Sj ◦ R−1

i .

Proof. We prove only (1); the proofs of (2),(3) are similar. To sim-
plify the notation, we drop the subscripts i, j. Assume S ◦R ⊆ R◦S,
x∼(S ◦ R)y∼. Then for some z, x∼Sz∼Ry∼, and hence by definition
in Lemma 8, we obtain x1 ≈ x, z1 ≈ z2 ≈ z, y2 ≈ y such that
x1Sz1, z2Ry2. So z1(≈ ◦R)y2, and thus by Lemma 15, there exists
y1 such that z1Ry1, y1 ≈ y2 ≈ y.

Next, S ◦ R ⊆ R ◦ S implies x1(R ◦ S)y1. So there exists u such
that x1RuSy1, and thus x∼Su∼Ry∼. %

LEMMA 17. Let M , Ψ be the same as in Definition 14. Assume that
Ri is Ji-quasitransitive, 1 ≤ i ≤ n. Construct the set Φ as in Lemma
11. Let ≈ be the bisimilarity modulo Φ, and according to Lemma
11, consider the filtration M ′ = (W ′, R′

1, . . . , R
′
n, S′

1, . . . , S
′
m) of M

through Ψ,≈ such that
R′

i = R+
i , the Ji-quasitransitive closure of Ri, and S′

i = Si.
Then the following holds:

(1) Sk ◦ Ri ⊆ Ri ◦ Sk =⇒ S′
k ◦ R′

i ⊆ R′
i ◦ S′

k;

(2) Ri ◦ Sk ⊆ Sk ◦ Ri =⇒ R′
i ◦ S′

k ⊆ S′
k ◦ R′

i;
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(3) R−1
i ◦ Sk ⊆ Sk ◦ R−1

i =⇒ R′
i
−1 ◦ S′

k ⊆ S′
k ◦ R′

i
−1.

Proof. Follows easily from the previous Lemma. By Lemma 19,
R′

i can be presented as
⋃

h∈Hi

Rh+1
i , where Hi is the additive closure

of {0} ∪ Ji. By Lemma 16 (1), Sk ◦ Ri ⊆ Ri ◦ Sk implies Sk ◦ Ri ⊆
Ri◦Sk, and hence by induction, Sk ◦Rj+1

i ⊆ Rj+1
i ◦Sk, which implies

Sk ◦ R′
i ⊆ R′

i ◦ Sk. Similarly, for the claims (2), (3). %

4 Main results on finite model property

Let us now recall the definitions of products and relativised prod-
ucts.

DEFINITION 18. The product of Kripke frames F = (W,R1, . . . , Rn),
G = (V, S1, . . . , Sm) is the frame

F × G = (W × V,R11, . . . , Rn1, S12, . . . , Sm2)

such that
(x, y)Ri1(x′, y′) ⇔ xRix

′ & y = y′;

(x, y)Sj2(x′, y′) ⇔ x = x′ & ySjy
′.

A relativised product of F and G is an arbitrary subframe of F × G.

DEFINITION 19. (cf. [5]) A quasitranstitive (QT) formula is one of
the following kinds:

• !ip → !j
ip (j ≥ 0);

• ♦i!ip → p.

A QTC-logic is a modal logic axiomatized by a finite set containing
QT-formulas and maybe also closed formulas. A QTC±-logic has the
form K±m + L0, where L0 is a QTC-logic.

Remark. The above two kinds of QT-formulas correspond to
the following conditions on frames: Rj

i ⊆ Ri, Ri = R−1
i . A more

general type, pseudotransitive (PT) formulas, was also considered in
[5]: 91!jp → ∆2p, where 91 is a sequence of diamonds, ∆2 is a
sequence of boxes; such a formula corresponds to the frame condition
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(R∆1)−1R∆2 ⊆ Rj, where R∆i are the corresponding compositions
of basic relations in a frame. A PTC-logic is axiomatized by PT-
formulas plus maybe, closed formulas. From [5] it is known that
any two PTC-logics are product-matching, but the question if every
PTC-logic has the fmp, is open4. This explains why we deal with a
smaller class of QTC-logics in this paper.

DEFINITION 20. A weak product of an n-modal logic L1 and an m-
modal logic L2 is obtained from their fusion L1 ∗L2 by adding some
commutation axioms of the forms
♦i!n+jp → !n+j♦ip, !i!n+jp → !n+j!ip, !n+j!ip → !i!n+jp,
for 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Recall that the corresponding frame conditions are:

R−1
i ◦Rn+j ⊆ Rn+j◦R−1

i , Rn+j◦Ri ⊆ Ri◦Rn+j, Ri◦Rn+j ⊆ Rn+j◦Ri.

THEOREM 21. Let Λ be a weak product of Kn and a QTC±-logic
L2. Then Λ is determined by some class of relativized products G ⊆
F1 × F2, where F1 is an n-tree, F2 # L2.

Proof. By an appropriate p-morphism construction similar to [4],
Section 9.1. First note that Λ is elementary and complete by Sahlqvist’s
theorem. Assume that A,∈Λ, then there exists a rooted countable
frame F = (W,R1, R2) # Λ refuting A. It follows that F is a p-
morphic image of some relativized product G ⊆ F1 × F2, where F1

is a standard (infinite) tree, F2 is the Horn closure (corresponding
to the QT-axioms of L2) of a standard tree. G is selected from
their product by a game-theoretic argument (see below), so that it
validates the commutation axioms from Definition 20. Since QT-
formulas correspond to universal first order conditions, their validity
is preserved for subframes. The validity of closed formulas is reflected
by p-morphisms, so we obtain that G # Λ.

Let us describe the corresponding game for the case n = 1, L2 = K.
We may assume that the relations R1, R2 in F are non-empty —
otherwise the claim is trivial. Let Tω be the standard (intransitive

4The simplest unclear cases are K+♦1!1p → !2p and K+!1p → !2!1!2p.
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irreflexive) countable tree consisting of all finite sequences in ω, and
let S1, S2 be the basic relations in the square Tω × Tω.

An arrow in F is a triple (x, j, y), such that x, y ∈ W, j ∈ {1, 2},
and xRjy.

A network over F is a function h : N → W such that

• (λ,λ) ∈ N , where λ is the empty sequence.

• N ⊆ Tω × Tω is a finite connected subset (i.e., in N the root
(λ,λ) is connected by a path with every point).

• h is monotonic: ∀a, b ∈ N (aSib ⇒ h(a)Rih(b)).

If h, g are two networks, we write: h ⊆ g to denote that g prolongs
h.

The rectification game over F of length ω (notation: RGω(F )) is a
game between two players, ∀ and ∃, who build a countable increasing
sequence of networks: h0 ⊆ h1 ⊆ . . . ⊆ hi ⊆ . . . , where hi : Ni −→
W , according to the rules:

• N0 = {(λ,λ)}; h0(λ,λ) = u0 (the root of F ).

• ∀ starts the game, and ∀ and ∃ make their moves in turn.

• hi is built from hi−1 at the i-th move of ∃.

• ∀ is allowed to make the i-th move of one of the two types:

(i) choose a ‘lift enquiry’:
a quadruple (a, x, j, y), where a ∈ Ni−1, x = hi−1(a), and
(x, j, y) is an arrow in F ;

(ii) choose a ‘commutation enquiry’, which is a pair of arrows
in Ni−1:
if the axiom ♦1!2p → !2♦1p is present in Λ, this is
((a, 1, b), (a, 2, c));
if the axiom !1!2p → !2!1p is in Λ, this is ((a, 2, b), (b, 1, c)),
and similarly for the axiom !2!1p → !1!2p.

• ∃ is allowed to respond to the moves of ∀ as follows:
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(i) in a response to a lift enquiry (a, x, j, y) — to build a
network hi : Ni −→ W such that hi−1 ⊆ hi, and for some
b ∈ Ni, aSjb, hi(b) = y, (i.e. hi lifts the arrow (x, j, y) to
(a, j, b));

(ii) in a response to a commutation enqury — to build a net-
work hi : Ni −→ F extending hi−1 such that Ni con-
tains the missing element. That is, in the case of the
enquiry ((a, 1, b), (a, 2, c)), Ni should contain d such that
bS2d and cS1d; in the case of the enquiry ((a, 2, b), (b, 1, c)),
Ni should contain d such that aS1d and dS2c etc.

We assume that the player ∃ wins in every infinite play of the game;
she loses if at some stage she cannot respond to a move of ∀.

A winning strategy for ∃ in the game is defined as usual; this is a
function of the already constructed network and the last move of ∀,
giving the response of ∃.

LEMMA 22. If the player ∃ has a winning strategy in RGω(F ), then
F is a p-morhic image of a relativized product of two trees validating
the appropriate commutation axioms.

Proof.
Assume that ∃ has a winning strategy. Let us find a strategy for

∀, allowing ∃ to construct a required p-morphism.
Let Ar(F ) be the set of all arrows in F ; then the elements of the

countable set Π = Tω × Ar(F ) and all commutation enquiries in
Tω ×Tω can be put into a sequence π1, . . . ,πn, . . . Now we choose the
following strategy for ∀:

Every move of ∀ is the first occurence of a lift enquiry or a com-
mutation enquiry in the sequence π, which is an allowed move and
which has not been used in the previous moves; if it does not exist,
this is a repetition of his previous move.

Obviously, ∀ can make the first move, since by our assumption,
R1(u0) ∪ R2(u0) ,= ∅.

If ∃ uses her winning strategy in response to these moves of ∀, they
can build a sequence of networks h0 ⊆ h1 ⊆ . . ..

Let h =
∞⋃
i=0

hi, Ni = dom(hi), N = dom(h); then N =
∞⋃
i=0

Ni.
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We claim that h is a required p-morphism. Obviously, h is mono-
tonic, since every hi is a network. By the same reason, N is a con-
nected subset of Φ1×Φ2, where the sets Φ1 := pr1(N), Φ2 := pr2(N)

are standard trees. Let us show that the commutation axioms hold
in N . In fact, suppose the contrary. Then there exists a commutation
enquiry in N , say, πn = (a, 1, b, 2, c), but there does not exist d ∈ N
such that aS2dS1c. Take i such that a, b, c ∈ Ni. Then the chosen
strategy for ∀ suggests that πn should be his even move with a number
k ≤ i + n. In fact, after the i-th move is made, the only reason to
postpone the move πn is the existence of an allowed commutation
enquiry with a number less than n. But all these enquiries should be
exhausted by the (i + n)-th move.

In a similar way, let us check the lift property for h. Assume that
a ∈ Nk−1, h(a) = xRjy.

Then the lift enquiry (a, x, j, y) is an allowed move of ∀ with a
number ≥ k. This enquiry occurs in the sequence π as some πn, and
according to the strategy of ∀, this must be his move with a number
l ≤ k + n, because this enquiry, after the k-th move is made, can be
postponed only in favour of πi with i < n. The response of ∃ is a
network hl : Nl −→ F lifting (x, j, y) to (a, j, b). So h(b) = y, aRjb.

%

LEMMA 23. ∃ has a winning strategy in RGω(F ).

Proof. Consider the i-th move of ∀, which is a lift enquiry (a, x, k, y),
and assume that k = 2. (If k = 1, the argument is the same.)

If a = (α,β) then we take n such that b = (α,βn) ,∈ Ni−1 (it exists
because Ni−1 is finite), and put Ni = Ni−1∪{b}, hi(b) = y. It is clear
that hi is monotonic and Ni is connected; so hi is a correct response.

Suppose the i-th move of ∀ is a commutation enquiry (a, 1, b, 2, d).
Then !2!1p → !1!2p ∈ Λ, and thus R1 ◦R2 ⊆ R2 ◦R1 holds in F .
It is clear that there exists a unique c ∈ Tω × Tω such that aS2cS1d.
If c ∈ Ni−1, the response of ∃ will be hi = hi−1. Otherwise, let
hi−1(a) = x, hi−1(b) = y, hi−1(d) = z. Since hi−1 is monotonic, we
have xR1yR2z, and due to the commutation property of F ,
x(R2◦R1)z, i.e., there exists t such that xR2tR1y. Then the response
of ∃ will be hi = hi−1 ∪ {(c, t)}.
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Figure 3.

For other types of commutation enquiries the argument is quite
similar. %

An analogous construction can be applied to L2 = Kn. If L2 also has
axioms !ip → !j

ip or ♦i!ip → p, they are valid in F , and we should
take the corresponding Horn closures G+, F2 of G, Φ2. Then h is a
p-morphism from G+ onto F , cf. [5], Proposition 7.9.

%

LEMMA 24. There exist finitely many equivalence classes with re-
spect to the relation M,x 6 N, y for n-tree models

M , N of fixed finite height with roots x, y.

Proof. Since in trees bisimilar paths are of equal length, M,x 6 N, y
implies h(M) = h(N). Now the argument is by induction on h(M).

If h(M) = 0, M , N are singletons, and x 6 y iff the same proposi-
tion letters are true at x and y. So in this case there exist 2k 6-classes
(recall that k is the fixed number of proposition letters).

Assume that h(M) = l and there exist r 6-classes for n-tree models
of height < l. We claim that M,x 6 N, y iff the same proposition
letters are true at x and y, and also ∀i ≤ n ({z' | xRiz} =
{t' | ySit}), where Ri, Si are the relations in M , N respectively, and
z' denotes the 6-class of Mz, z (or N z, z).

In fact, the direction ‘only if’ is easy. To check ‘if’, assume that
the truth values of proposition letters coincide in x and y and
{z' | z ∈ Ri(x)} = {t' | t ∈ Si(y)} for any i ≤ n. Then there
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Figure 4.

exist bisimulations Eizt : Mz, z 6 N t, t, with (z, t) ∈ Vi, for some set
Vi ⊆ Ri(x) × Si(y) such that pr1(Vi) = Ri(x), pr2(Vi) = Si(y).

Then

E := {(x, y)} ∪
⋃

{Eizt | 1 ≤ i ≤ n, (z, t) ∈ Vi}

is a bisimulation between M,x and N, y. In fact, Eizt works properly
between Mz and N t. Since pr2(Vi) = Si(y), we also have
∀z ∈ Ri(x) ∃t ∈ Si(y) tEz, and

similarly, every t ∈ Si(y) corresponds to some z ∈ Ri(x), and
finally, E sends x, the unique predecessor of z, to y, the unique
predecessor of t.

Thus the 6-class of M,x is uniquely determined by the set
{pi | M,x # pi} and {z' | z ∈ Ri(x)} (for 1 ≤ i ≤ n), and so there
exist at most (2k · (2r)n) 6-classes of M,x with h(M) = l. %

LEMMA 25. Let M , ≈ be the same as in Definition 14 and assume
that every n-trace x↑ is an n-tree of height ≤ l for some fixed l. Then
the set W/ ≈ is finite.
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Proof. In fact, x ≈ y only if x ↑, x 6 y ↑, y, only if x ↑, u 6 y ↑, v,
where u, v are the roots of x ↑, y ↑. So the number of ≈-classes is
finite, by Lemma 24. %

THEOREM 26. Every logic Λ from Theorem 21 has the fmp.

Proof. By Theorem 21, every A,∈Λ is refuted in a model M over
a Λ-frame F ⊆ F1 × F2, where F1 is an n-tree; moreover, we may
assume that M, (x0, y0) ,# A, where x0 is the root of F1, y0 is the root
of F2.

Let d1(B) denote the modal depth of a formula B with respect to
!1, . . . ,!n (the maximal number of nested modalities of this type).
Assume that d1(A) = r. For x ∈ F let h1(x) be the height of its first
coordinate pr1(x) in F1.

Let M− (respectively, F−) be the restriction of M (respectively,
F ) to the set {x | h1(x) ≤ r}. Then for any v ∈ F−, for any formula
B:

(1) if h1(v) + d1(B) ≤ r, then M,v # B ⇐⇒ M−, v # B.

This is proved by induction on d1(B) (cf. Lemma 9.11 in [5]). In
fact, if d1(B) = 0, the claim is obvious. If d1(B) > 0, the only non-
trivial case is when B = !iC. So assume that (1) is proved for C,
M,v # B. Then M,w # C for any w ∈ Ri1(v). Since vRi1w implies
h1(w) = h1(v)−1 and d1(C) = d1(B)−1, we obtain d1(C)+h1(w) =
d1(B) + h1(v) ≤ r, and thus by induction hypothesis, M−, w # C.
Thus M−, w # B.

If B = !n+jC, then M,v # B means ∀w ∈ Sj2(v) M,w # C. But
vSj2w implies h1(v) = h1(w), and thus d1(C) + h1(w) < d1(B) +
h1(v) ≤ r. Hence M−, w # C, by induction hypothesis, and thus
M−, w # B.

The converse (M−, v # B =⇒ M,v # B) is proved in the same
way.

Since h1(x0, y0) = 0, from (1) we obtain:

(2) M−, (x0, y0) ,# A.

We also have:
(3) F− # Λ.
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In fact, for every x ∈ F− the subframes generated by x along the
second coordinate in F and in F− are the same.

Thus F− # Kn ∗ L2.
It is also clear that F− inherits the commutation properties of F .

For example, assume that Ri1 ◦ Sj2 ⊆ Sj2 ◦ Ri1 holds in F . Now if
(x1, y1)Ri1(x2, y1)Sj2(x2, y2) in F−, then h1(x1, y2) = h1(x1, y1) ≤ r,
and so (x1, y2) ∈ F−; thus (x1, y1)(Sj2 ◦ Ri1)(x2, y2) holds in F−.

Therefore we can take the filtration of M− as in Lemma 17. The
resulting model M ′ is finite, due to Lemma 25. %

The previous Theorem can be generalized to the temporal case.

THEOREM 27. Let Λ be a weak product of K±n and a QTC±-logic
L2. Then Λ has the fmp.

Proof. (Sketch.) The idea of the proof is the same as above, but
n-trees are replaced with temporal n-trees. Note that now we do not
need Church – Rosser axioms ♦i!n+jp → !n+j♦ip — they can be
replaced with !n+j!−1

i p → !−1
i !n+jp. The proof of Theorem 21 is

easily modified for this case. For example, if Λ = K±1 × K±1, we
take the standard temporal tree T±

ω and construct G ⊆ T±
ω × T±

ω by
a rectification game, in which commutation enquiries may be of the
form (a, i, b), (b, j, c)), where i = ±1, j = ±2 or j = ±1, i = ±2.

The proof of the analogue of Lemma 24 is slightly more delicate,
because now a path can use the same arrow in both directions many
times. So we first make a reduction of a given temporal tree model
M (with a chosen root x) as follows. We can identify two arrows
(x, i, y) and (x, i, z) (or (y, i, x) and (z, i, x)) if there exists a bisim-
ulation of M associating x with x and y with z. So we successively
identify arrows in this way as long as possible. The reduced tree is
bisimilar to the original one. Every point (except x) has a unique
father (the predecessor in the unique path from x to that point);
non-terminal points may also have Ri- or R−1

i -sons. Now similar to
the proof of Lemma 24, we have the criterion of bisimilarity for two
reduced n-temporal trees of the same height: M,x 6 N, y iff the same
proposition letters are true in M,x and N, y and the set of 6-classes
of Mz, z and Nz, z are the same for Ri-sons of x and y, and also for
R−1

i -sons of x and y. Here Mz denotes the subtree of M with root
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Figure 5.

z obtained from M by eliminating all points connected with z via x
(i.e., those meeting x on on the shortest path to z).

%

Hence we obtain the fmp for some product logics:

COROLLARY 28. The logics K±n×K±m, K±n×S5m, K±n×K4±m,
K±n × S4±m have the fmp.

Remarks. 1. This implies the fmp of the logic K.t2 (which has
been an open question) and therefore, of K × K.t. The proof of the
latter result given in [6], is much more complicated.

2. We also obtain the fmp for K × S5m, m > 1. Note that the
earlier proof given in [5], contained a gap noticed by A. Kurucz [4],
Section 5.3. Apparently, the methods of this paper can be extended
to the products S5m × L2, where L2 is a QTC-logic.

3. This also implies a positive answer to the question about the
fmp of K×K4 put in [4], p.339. However the question, whether the
more powerful (but decidable) logic K× PDL has the fmp, remains
open; our methods are not directly transferable to this case.
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