On Neighbourhood Semantics
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VALENTIN SHEHTMAN

1 Introduction

The research of Dov Gabbay includes different parts of logic, and in many
cases it essentially influenced further development. Problems considered
here are motivated by two his papers, [Gabbay, 1975] and [Gabbay and de
Jongh, 1974]. These papers appeared at the beginning of the 1970s, at the
time of remarkable events in modal logic, when all of a sudden the whole
area was found full of difficult problems and nice theorems, like flowers
growing in high mountains, and young researchers came for new interesting
discoveries.

General problems in neighbourhood semantics were first addressed by D.
Gabbay and M. Gerson in [Gabbay, 1975; Gerson, 1975a; 1975b]. At that
time the interest in neighbourhood semantics was rather moderate, but now
it is clear that neighbourhood approach may be quite useful in different
kinds of modal logic: spatial, epistemic, conditional etc. [van Benthem and
Sarenac, 2004; Aiello, 2002].

This paper studies neighbourhood completeness and compactness for
modal and intermediate logics. We show that completeness and compact-
ness are closely related: noncompact logics (in Thomason’s sense [Thoma-
son, 1972]) may be helpful for distinguishing Kripke and neighbourhood
completeness, which is the problem studied in [Gabbay, 1975]. Three tech-
nical details are crucial here: K. Fine’s frame [Fine, 1974], the axiomatisa-
tion of binary finite trees [Gabbay and de Jongh, 1974], and the ultrabouget
construction [Shehtman, 1998].

Some of the results presented here were published, but only in Russian,
in a hardly available paper [Shehtman, 1980] and later in the author’s The-
sis [Shehtman, 2000] (even less available). So we give a slightly modified
exposition of these results.

The plan of the paper is as follows. Section 2 contains very basic material
on Kripke and neigbourhood semantics; but some notions (such as different
kinds of compactness in modal logic) are not widely known. In Section 3 we
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recall properties of ultrabouqets of topological spaces proved in [Shehtman,
1998]. Ultrabougets of neighbourhood K4-frames are considered in Section
4. The latter construction is new, and it is used only in Section 9, so the
readers can skip it if they are interested in other parts of the paper. Section
5 presents an example of a TKN-noncompact extension of Grz from [She-
htman, 1980]. Basing on it, we construct a new rather simple example of a
relatively incomplete modal logic in Section 6. The same is done for inter-
mediate logics: Section 7 contains an example of TK-noncompactness from
[Shehtman, 1980], and Section 8 — a new example of relative incomplete-
ness. Note that the earlier example of a relatively incomplete intermediate
logic is quite complicated. This example is recalled in Section 10, but with-
out the laborious proof (given in full detail in [Shehtman, 2000]). Section 9
also proves new results: N-compactness for all extensions of GL and Grz.
Section 10 contains some hints for further results and some questions.

2 Preliminaries

The material of this Section is rather standard, most of it can be found in
the first chapters of [Chagrov and Zakharyaschev, 1997], but our notation
is slightly different.

In this paper we consider monomodal and intermediate propositional
logics. So modal formulas are constructed from the countable set of propo-
sitional variables PV = {p,q,...}, the constant L, and the connectives
— A, V, O; the derived connectives are: —, T, <, <. Intuitionistic
formulas are modal formulas without occurrences of [J.

A modal logic is a set of modal formulas containing all classical tautolo-
gies, the axiom O(p — ¢) — (Op — Oq) and closed under Modus Ponens,
O-introduction, and Substitution; we consider only consistent logics (i.e.
not containing ).

An intermediate logic is a consistent set of intuitionistic formulas closed
under (intuitionistic) Substitutions and Modus Ponens and containing the
standard axioms of Heyting Calculus [Chagrov and Zakharyaschev, 1997].

The minimal modal logic is denoted as usual by K. Intuitionistic logic
(denoted by H) is the smallest intermediate logic.

For alogic A and a formula A, the notation A F A is used as an equivalent
to A € A. For a set of formulas I' and a modal (or intermediate) logic A,
the minimal modal (resp., intermediate) logic containing A UT is denoted
by A +T.
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Some particular modal logics used in this paper are

K4 =K + Op — OOp,
S4=K4+0Op — p,

Grz = S4 + AG (Grzegorczyk logic),
GL = K4 + AL (Lob logic),

where
AG :==(pAO(p — S(—p A Op))),

AL :=0(0p — p) — Op.

Note that the AG is usually written in a different (equivalent) form: as
OO(p — Op) = p) = p.

The intermediate logic of our special interest is Gabbay — De Jongh’s
H + Br,, where

Bry:=(\@—-\/P)—~\/P)—\/ P,
i=0

i i i=0

and Py :=p, P :=¢q, P, := (peq).

This logic was introduced in [Gabbay and de Jongh, 1974], with the axiom
Bry in an equivalent form, where P; are just propositional variables. The
above form (proposed by S.K. Sobolev) uses only two variables.

A neighbourhood frame is a pair X = (X, 0) consisting of a non-empty set
with an operation on its subsets O : 2¥ — 2% In this paper we consider
only K4-frames, i.e. those, in which O(V; NnV,) = OV, nOV,, OX = X
OV C OOV and S4-frames (also satisfying OV C V). The latter are
nothing but topological spaces (O is the interior operator). OV = —O(=V)!
is the closure operator in topological spaces: A (neighbourhood) model over
X is a pair M = (X,0), where § : PV — 2% is a valuation in X.

The map 6 extends to all formulas in the well-known way:
0(L)=2, (A — B) = —6(A)UB(B), (AN B)=0(A)NH(B),
0(AV B) =0(A)UB(B), 6(0A) =00(A).

The notation M,z F A means x € 6(A), which is also read as “a modal
formula A is true at world x of M”. A is called

e true in M (notation: M F A) if A is true at all worlds of M;

e valid at X,z (notation: F,z F A) if A is true at world z under all
valuations;

e valid in X (notation: X F A) if A is valid at all worlds of X.

L(~V) denotes the compement of V.



4 Valentin Shehtman

ML(X) denotes the modal logic of X, i.e., the set of all modal formulas
valid in X. If A C ML(X), then X is called a A-frame. For a class of
frames C, we denote ML(C) := ({L(X) | X € C} (the modal logic of C, or
the modal logic determined by C). A modal logic determined by some class
of neighbourhood frames is called neighbourhood complete, or N-complete.

A Kripke frame is a pair F = (W, R) consisting of a non-empty set with
a binary relation. F' is associated with the neighbourhood frame N(F) =
(W,0) such that OV = {& € W | R(z) C V}. In this paper all Kripke
frames are transitive.

A (Kripke) model over F is a pair M = (F,0), where § : PV — 2W is a
valuation; so we can consider M as a neghbourhood model over N (F). For
Kripke frames we also use the notations M,z F A, M F A, FF A, F,x E
A, ML(F) and the corresponding terminology, as explained above. So
transitive Kripke frames are exactly K4-frames; reflexive transitive Kripke
frames (quasi-ordered sets) are exactly S4-frames. Logics determined by
classes of Kripke frames are called Kripke complete (or K-complete).

For semantics of intuitionistic formulas we need topological spaces rather
than arbitrary neighbourhood frames. Every intuitionistic formula A trans-
lates as a modal formula A7 (by putting O in front of every its subformula).
A valuation 6 in a space X is called intuitionistic if 6(s) is open for any
propositional variable s; then (X,60) is an intuitionistic topological model.
For any intuitionistic formula A we put:

67(A) :=0(A").

Thus we obtain the intuitionistic extension 87 of 6.
We shall also use some special notation. For intutuionistic formulas A,
B we put
6°(A — B) := (A, B) := 61 (A) — 01(B).

Thus = € 07 (A — B) iff z € O0°*(A — B), and 6°*(=A) = §1(A).

The intuitionistic notions of truth and validity are defined similarly to
the modal case:

M,z I+ A means z € §/(A) and is also read as “A is intuitionistically
true at world x of M”, or “M,x forces A”. A is called

e intuitionistically true in M (notation: M I+ A)if A is intuitionistically
true at all worlds of M;

o intuitionistically valid at X,z (notation: X,z IF A) if A is intuitionis-
tically true at world z under all intuitionistic valuations;

o intuitionistically valid in X (notation: X I+ A) if A is intuitionistically
valid at all worlds of X.
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The set of all intuitionistic formulas valid in X is denoted by IL(X) (the
intermediate logic of X)
Let us recall sufficient conditions for validity of AG and Br,.

LEMMA 1. For a Kripke S4-frame F = (W, R)

(1) F E AG iff F is Nothereian, i.e. it does not contain infinite ascending
chains: rgRx1R. ..

(2) If R is a partial order, then F |F Brs if every world has at most two
immediate successors: ¥YxJy,z (xRy & xRz & R(x) = {z} U R(y) U
R(z)).

Let us also recall two standard facts:

LEMMA 2. Let 8, v be a modal and an intuitionistic valuation in the same
topological space such that for any s € PV

P(s) = 00(s).
Then for any intuitionistic A
Pl (A) = 6(A").

COROLLARY 3. Let X be a topological space, A an intuitionistic formula.
Then

(1) foranyz € X X,z Aiff X,z F AT,
(2) X - Aiffx E AT,

A Kd4-frame X = (X,0) is associated with a topological space X+ =
(X,0%) such that O"Y = OY NY. The topological terminology referring
to Xt will be also used for X; so for example, we say that a subset Y is
closed in X if it is closed in X (which is equivalent to ¢Y CY); Y is open
i X it Y C OY. So a closed point & may be of two kinds: reflexive, with
O{z} = {x}, and irreflexive, with O{z} = &.

If X is corresponds to a Kripke frame (W, R), then OY = R~1(Y), so =
is closed iff z is R-minimal, and the above reflexivity notion corresponds to
the standard one.

LEMMA 4. Let x be a reflexive closed point in a K4-frame. Then x € OV
implies z € V.

Proof. Suppose z € OV, but x ¢ V. Then V C —{z}, and so OV C
O(—{z}). Thus z € O(—{x}), i.e. z & G{z} — a contradiction. |
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DEFINITION 5. Let X = (X,0) be a neighbourhood frame, X; C X.
The restriction of X to X (or the subframe obtained by restriction to X,
notation: X [ X;) is A} = (Xy1,01), where O,V := 0OV N Xy for V C X;.
X1 (and A&)) is called open if X is open.

LEMMA 6. Let X be an open subframe of a K4-frame X. Let ¢ be a
valuation in X, Y1 a valuation in Xy such that ¢¥1(s) = ¥(s) N X1 for any
s € PV. Then for any modal formula A, ¢, (A4) = ¢¥(4) N X;.

Proof. Easy, by induction on A. Here is the induction step for A = OB:
suppose ¥ (B) = ¢(B) N X;; then

Yi(A) =01 (B) =0i(®(B) N X1) =0W(B)NX1)NXy =

Oy(B) NOX; N Xy = Op(B)N Xy = $(4) N Xy n

LEMMA 7. If X; C X is open, then ML(X) C ML(X}).

Proof. By Lemma 6, if (X1,;) A, then (X,9)F A, where ¢(s) = ¢1(s)
for any s € PV. |

DEFINITION 8. For a Kripke frame F' = (W,R) and a set V. C W we
define the subframe F [V := (V,RN(V x V)). A subframe of (transitive)
F generated by a world x is F* := F | R(x), where R(x) := R(z) U {z}.
A frame F is called rooted with the root z if F = F? ie. if W = R(z).
A p-morphism from a Kripke frame F' = (W, R) onto a Kripke frame
F'= (W' R') is a surjective map f : W — W' such that for any z € W

f(R(z)) = R'(f(x)).

f: F — F' denotes that f is a p-morphism from F onto F'. The following
two lemmas are well-known.
LEMMA 9. (Generation Lemma)
L(F)=N{L(F*) |z € W}.
LEMMA 10. (P-morphism Lemma)
f: F — F' implies ML(F) C ML(F') (and IL(F) C IL(F') if F, F'
are S4-frames). More precisely, if f : F — F' and for every s € PV,
o(s) = f1(¢'(s)), then

(B, @),z B Aff (F',¢"), f(z) F A
for any world x and modal formula A, and similarly for the intutuionistic
case.

DEFINITION 11. A formula A (modal or intuitionistic) is a logical conse-
quence of a logic A (respectively, modal or intermediate) in neighbourhood
semantics (notation: A Enx A) if A is valid in all neighbourhood A-frames.
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Similarly, A is a logical consequence of A in Kripke semantics (notation:
A Eg A) if A is valid in all Kripke A-frames.

One can easily check the following
LEMMA 12.

(1) Ck(A) :={A| A Ex A} is the smallest K-complete logic containing
A.

(2) Cn(A) := {A| A Ex A} is the smallest N-complete logic containing
A.

So we have
A CCOn(A) CCk(A).

DEFINITION 13. A modal or intermediate logic A is called relatively com-
plete if Cn(A) = Ck(A).
We can also consider finitary logical consequence.

DEFINITION 14. A IZ?V A if Ay Exy A for some finitely axiomatisable
Ay C A. The relation A % A is defined analogously.

Let
Cr(A) :={A] A F5 A},
CU(A) :={A| AEY A},
The following diagram is clear:
A CCR(A) C COn(A)
N N

Ck(A)  C Ck(A)
DEFINITION 15. A logic A is called
e TK-compact if C%(A) = Ck(A),
o TN-compact if C{(A) = Cn(A),
e TKN-compact if Cn(A) C C%(A).

Obviously, every finitely axiomatisable logic is both TK-compact and TN-
compact. There is also the following diagram of properties:

K-completeness = TK-compactness = TKN-compactness

U

N-completeness = TN-compactness = TKN-compactness
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DEFINITION 16.
A set of modal formulas T is called satisfiable in a frame F' if there exists
a model M over F' and a world x such that M,z F A for every A € T.

DEFINITION 17. Let A be a modal logic. A set of modal formulas T’
is called A-N-satisfiable (respectively, A-K-satisfiable) if it is satisfiable in
some neighbourhood (respectively, Kripke) A-frame. T is called finitely A-
N-satisfiable if every its finite subset is A-N-satisfiable; the definition of
finite A-K-satisfiability is analogous.

DEFINITION 18. A modal logic A is called
e N-compact if every finitely A-N-satisfiable set is A-N-satisfiable,

e strongly neighbourhood (SN-) complete if it is both N-complete and
N-compact.

K-compactness and SK-completeness are defined in a similar way.

An equivalent definition of SN-completeness is the following: every A-
consistent set of formulas is A-N-satisfiable.

3 Ultrabougets of topological spaces

The notion of an ultrabouget exists in several versions, cf. [Shehtman, 1998;
1999]. Let us begin with the case of topological spaces.

DEFINITION 19. Let (X,,%,), n € w be sets with designated points.
Their bouget \/ (X,,z,) is obtained from the disjoint union || X, by

new new
identifying all points x,.

We denote the designated point of \/ (X, z,) by ..
new
DEFINITION 20. Let X,, = (X,,,d,) be topological spaces, and for every
n, let z,, be a closed point in X),. Let U an ultrafilter in w. Then we define
the ultrabouget \/ (X, z,,) as the bouget \/ (X,,,z,) with the topology, in
u

new
which a subset V' is open iff the following conditions hold:

(1) every part V N (X, — {z,}) is open;
(2) if z. € V, then {n |z, € 0,(VNX,)}elU.
A particular case of this construction is when every X, corresponds to a

Kripke frame F,, = (W, R,,) with root z,, and R~'(z,) = {z,}. Then (1)
and (2) can be written as follows:
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(1) Ru(V O (X —{2a}) C V3
(2) if z, €V, then {n | W, CV} €U.

DEFINITION 21. Let X,, x, be the same as in Definition 20, v, a valua-
tion in A,,. Then we define the valuation ¢ = \/ ¢, in \/(X,,, z,,) as follows:
u u

for any propositional variable s,

z € Y(s) iff x € ¥,,(s) (whenever z € X,, — {z,}),

T € YP(s) i VOnz, € n(s),

where for a predicate P, V*°n P(n) means? {n | P(n)} € U.

LEMMA 22. Let X,, ©,, ¥, be the same as in Definition 21. Then for
any modal formula A,

(1) z € Y(A) iff x € Yu(A) (for z € X, — {zn}),
(2) z. € Y(A) iff Vnz, € Pp(A).

Proof. (1) Follows easily by induction on A; note that (X — {z,}) is open
both in X’ and X,.
(2) Also by induction, cf. [Shehtman, 1998, Lemma 5.5]. [ |

LEMMA 23. Let X, xy, be the same as in Definition 20, (X, z.) = \/(Xn, zn).
Then for any modal formula A, “

(1) X,z E Aiff Xp,x E A (whenever x € X, — {zn}),

(2) X,z. EA iff V°n Xy, xn E A.

Proof. (1) (Ounly if.) Assume X,z F A and consider an arbitrary valuation
¥ in X,. Let 1 be “the same” valuation in X, i.e. 1(s) = 1, (s) for every
s € PV. By our assumption, z € 1)(A); hence z € 9,,(A) by Lemma 22 (1).

(If.) Assume X,z F A and consider an arbitrary valuation ¢ in X. Let
1 be its “restriction” to X, i.e. ¥,(s) = ¥(s) N X, for every s € PV3.
By assumption, = € ¢)(A); hence = € 1,,(A) by Lemma 22 (1).

(2) (Only if.) Assume X, z. F A and suppose V°n X, x,, E A does not
hold. Since U is an ultrafilter, this implies V*°n X),, z,, # A. Then consider
valuations v, in X&), such that

o z, & Yp(A) if Xy, zn FA;

2y is read as “for almost all”.
3More precisely, this means: © € 9(s) iff z € ¢ (s) (for € X — {z,}) and . € ¥(s)
iff zn € Yn(s).
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e 1, is arbitrary otherwise.
Let ¢ = \/ ¢, (Definition 21); then V®n z,, € 1, (—=A) implies z,. € 1(—-A)
u

by Lemma 22. This contradicts our assumption.
(2) (If.) Assume V*°n X,,z, F A and consider an arbitrary valuation ¢
in X. For each n, take a valuation ¢, in X, such that ¥, (s) = ¥(s) N X,
for any s € PV. Then ¢y = \/ ¢,; in fact, z. € 9(s) iff Vnx, € 1,(s) iff
u

Inx, € Pr(s). So z, € P(s) implies V¥n z,, € ¥, (s), and z, & ¥ (s) implies
—V®°nx, € ¥,(s). By assumption, V°nz, € ¥,(A); hence z, € 1p(A) by
Lemma 22 (2). [ ]

LEMMA 24. Let X,,, x,,, X be the same as in Lemma 23. Then for any
intuitionistic formula A,

(1) X,z & A iff X,,,x E A (whenever z € X,, — {x,}),
(2) X,z. E A iff V°n Xy, xn E A.

Proof. Follows readily from Lemma 23 and Corollary 3. |

4 Ultrabouqgets of K4-frames

Now let us extend the notion of an ultrabouqet to neighbourhood K4-
frames.

DEFINITION 25. Let X, = (X,,0,), n € w be a family of K4-frames,
with designated closed points z,, which are all reflexive or all irreflexive.
Let (X,z4) = V (Xn,z,) be the corresponding bouget, ¢ an ultrafilter in

new

w. For V. .C X we put

Ve =V X4
av :=viuve,
where
V= @0V = {z)),
and

%] otherwise.

Vo . { {z.} if Y*®nz, € 0,Vy;

The frame (X,0) is called the ultrabouget of the family (X, %, )pew W.I.t
U and denoted by \/(Xy, zn)-
u

4More precisely, y € Vo iff (y Z2n &y EV N Xy ory =2, & 24 € V).
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Note that in the reflexive case x, € OV implies z. € V (and thus z, is
reflexive). In fact, if V*°n z, € 0,V,, then for some n, z, € 0,V,; hence
T, €V, by Lemma 4, ie. x, € V.

DEFINITION 26. Let X),, x, be the same as in Definition 25, and let ¥,
be valuations in A,,. Consider the valuation ¢ = \/ ¢, in \/(Xy,z,) such
u u

that for any s € PV,
z € Y(s) iff x € ¥,,(s) (whenever z € X,, — {z,}),
i € Y(s) if VOn x,, € ,(s).

LEMMA 27. Let X, ®y, ¥n, 1 be the same as in Definition 26. Then for
any modal formula A,

(1) z € Y(A) iff v € ¥, (A) (for z € X,, — {z,}),
(2) z. € Y(A) iff Vnxz, € p(A).
Proof. Both statements are proved by induction on the length of A. Let

us consider the only nontrivial case: A = OB.
(1) We have:

z € p(A) = DY(B) iff z € Y(B)! iff x € O,1)(B),,
x € Ynp(A) iff z € 0,0, (B).
Since z,, is closed, we also have z € O,(X,, — {z,}), and thus
z € 0,9(B), iff z € O,(¢(B), — {zn}),
z € Oppn(B) iff © € O, (Yn(B) — {zn}).
By induction hypothesis,
V(B)n — {20} = n(B) — {zn},

hence
z € p(A)iff x € h,(A).
(2) Reflexive case. By Definition 25 we have:

(1) =z« € ¥(A) =0OyY(B) iff V*°nz, € 0,0 (B)n.

Now assume z, € ¢(A). By the remark after Definition 25 it follows that
z, € ¥(B), and thus for any n, z,, € ¥(B),. Hence by induction hypothesis

(1),
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(#) »(B)n = {zn} U @(B)n — {za}) = {zn} U (n(B) — {zn}) =
Un(B) U {zy,}.

By induction hypothesis (2), z. € (B) implies V*°n x,, € ,(B), and
thus from (ft) we have

(#88)  Von ¢n(B) = ¢(B)n.

Eventually from (ft) and (f8%) we obtain

(£) Vonz, € Opthp(B) = Yn(A).

Conversely, assume (f). Then by Lemma 4, V*°n z, € ¢,(B), and thus
z« € P(B) by induction hypothesis (2). Hence by the same argument as
above we obtain (#ff). Now it follows that V*°nz, € O,¢(B),, which
implies z. € ¥(A) by (4).

Irreflexive case.

By Definition 4,

i € Y(A) it Vnz, € O,¢¥(B),.
By induction hypothesis,
Yu(B) —{zn} = Y(B)n — {20},

hence
Tp € On(Yn(B) — {zn}) it 2, € On(Y(B)n — {zn})-

Since &{z,} = @, we also have z,, € O,(—{z,}), and thus
Ty € Op¢0n(B) iff 2, € Opp(B)y.
This eventually implies

z. € Y(A) it Vnz, € O0,1¢,(B) = ¥, (A).

Hence similarly to Lemma 23, we obtain
LEMMA 28. Let X,,, =, be the same as in Definition 25, (X, z.) = \/(Xn, Ty)
u

Then for any modal formula A,
(1) X,z E A iff X, E A (whenever z € X,, — {x,}),
(2) X,z. E A iff V°n Xy, z, E A.

In particular, it follows that an ultrabouqet of K4-frames is a K4-frame.
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5 TKN-noncompactness above Grz

DEFINITION 29. Let us define modal formulas 3, v, by induction.

Bo = Op, Y0 = U-p,
B ==p A By A=, 11 =p A Oy A0S,
ﬂn+1 = OBn A CYn—1 A =0y, Tnt1 = O A OBn—1 AN =08y,

Also let
an = OBnt1 A OYng1 A 2OBppa A 70 Yp42,

en = Can AOfnta, Oy =ent1 A —=Oap,

On =€p = Oy, Ay = Grz+{J, | n > 0}, Agn) = Grz+{dm | n > m > 0}.
LEMMA 30. The following formulas are S4-theorems:

(1) Bn = OBm forn>m >0,

(2) Bn — O forn > 2,

(8) en = OBy forn > 0.
Proof. By definition, S4 3, — <3,_1. Hence by induction it follows that
S4F B, — Ofpy for n > m. Since S4 + 5 — Oy, v1 = Oy by definition,
it follows that S4 + f2 — <$np, and thus we obtain S4 F 3, — <O for
n > 2.

For the proof of (3), note that S4 ¢, = Cay, a, = Of,41 by defini-
tion and S4 F B,41 — ©Of1 by (1). [ ]

LEMMA 31. A topological space X refutes AG iff there exist sets Xo, X1 C
X such that

Xo# @, XoN X1 =2, Xo COX1, Xi COXo.
Proof. (If.) Take a valuation ¢ such that ¢(p) = Xo and consider the
model (X, ). Then we have: X; C ¢(—p), X1 C ¢(Cp), and thus
Xo € o(O(=p A Op)).
Hence (X, ) E p — &(Op A —p), and therefore
Xo € o(pAD(p = (=p A ©p))).

Since X # @, this implies that X refutes AG.
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(Only if.) Consider a model (X, ) and a point u such that
u€ e(pAD(p = O(=pA Op))).

Take a neighbourhood V' of = such that V' C p(p — S(—p A Op)) and put
Xo =) NV, Xi:=p(pA<p)n V. It follows that Xo, Xy are the sets
required. |

Remark. This lemma means that AG behaves like a subframe formula for
topological spaces: X F AG iff there exists a subreduction from A" onto a
two-element cluster, i.e. an interior map from a subspace of X’ onto the
two-element space with the weakest topology.

LEMMA 32. A topological space X refutes AG iff there exist sets Y, C
X, n >0 such that Yo # @ and for any n,

Yan Yn+1 =g, Y, C <>Yn+1-

Proof. (If.) Let Y = |J V,,. For y € Y put

necw
m(y) :==min{n |y € Y5},

and let
Xo :={y € Y | m(y) is even},

X, :={y € Y |m(y) is odd}.

Let us show that Xy, X; satisfy the conditions from the previous lemma.
In fact, Xo N X; = @ is trivial, and obviously, Xy D Yy # @. It remains to
prove by induction that

(x) VnVyeY (m(y) =n=ye oXyNOXy),

i.e. that Xo, X; are dense in Y. In fact, assume that (*) holds for any
k < n. Let m(y) = n, then y € Y,; C OY,41. If n is even, then obviously,
y € Xo C ©Xp; so we have to show that y € G Xj.

Take an arbitrary neighbourhood V of y; then it contains a point z €
Yot1. Since Y, NY, 41 = &, we have either m(z) = n + 1 (in which case
z € X1, by definition), or m(z) < n. In the latter case z € ¢ X7 by induction
hypothesis, and thus V' N X; # @. Hence y € ©X;.

If n is odd, the argument is similar.

(Only if.) Take the sets Xo, X; from Lemma 31 and put

{ Xy if nis even;

Yni=90 X, ifnis odd.
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bo by b, bs bs bs
¥
Co Cq C2 C3 Cq Cs
do aq az asz -
do d1 dz d3
Figure 1.

LEMMA 33. —¢o € Cn(Ay).

Proof. For a topological space X, suppose X F Ay, but ¢(ep) # @ for some
valuation ¢ in X'. Let Y}, := ¢(0,,). Then by definition, Y;, C ¢(ep+1), and
p(ent+1) C OYpht1, since X' F d,41. Hence Y, C OY)y1.

On the other hand, Y,, N Y41 = &, since

Yo C ¢(ent1) € o(QCantt), Yoy Co(=Canyy).

Finally, @ # ¢(g¢) C <Yy, since X' E do, and thus Yy # @.
So by Lemma 32, X' ¥ AG, which contradicts our assumption. |

DEFINITION 34. & = (W, <) (Fine’s frame) is the partially order set
shown in Fig. 1.

DEFINITION 35. Let ®,, = (W,,<) be the restriction of ® to the set
Wy :=W — {d,, | m > n + 2} (the n-truncated Fine’s frame).

LEMMA 36. ®,, E 0., for any m <mn.

Proof. For an arbitrary model (®,,¢), we have to prove that ¢(e,,) C

©(Obp,). So let us assume zx F &, and show that z F <6, (in this model).
First note that either (1) or (2) holds:

5To simplify notation, we use the same symbol < for the relation in ®,,.
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(1) bO k:pa Co F -p,

(2) co Fp, bo F —p.

In fact, if bo, co F p, then o(0O-p) = &, since either by or ¢y is accessible
from any world of ®,,. Thus ¢(v9) = @, which implies p(5)) = & for any
k > 2) (remember that S4 F (8 — <$v9 by Lemma 30). This contradicts
T F e

A similar argument shows, that p cannot be false at both bg, co.

Next, if (1) holds, by induction we obtain that for any k

(3)  @(Br) =A{be}, ¢(y) = {ex}-

In fact, we obviously have

bo € ¢(Bo), co € w(70)

and thus p(—=<0v0) C {bo, b1 }. Since by F p, it follows that ¢(81) C {b1}.
On the other hand, ®,, F ¢, — ¢f; by Lemma 30 and soundness; thus
x F Opf1, and so p(f1) # @, and the only remaining option is ¢(f1) = {b1 }-
A similar argument shows that ¢(v1) = {e1}.
Now we can apply induction for the proof of (3); for the induction step
note that for any y

YE By iffy <bp &y <cp1 &y Lepiffy =bpq,

and similarly for y F yg41.
Next, if (2) holds, in the same way we obtain

(4)  (Br) = A{ex}, ©(yr) = {be}-

Now since

y=ayiffy <bpy1 &y <k &y Lbpra &y £ cpyo,

it follows that (in any case)

(5) wlar) = {ar}-

By assumption, z F €,,, so we have
T < am and (z < bypga or < Cpta).

Therefore x < d,y,.

But m < n, and thus d,,y1 € ®,,. It remains to note that d,,+1 F 6,,.
In fact, we can again apply (3), (4), (5): dm+1 F emt1, since dpmy1 <
Amt1y D43, Cmas; at the same time d;p, 41 7 Cauy, since dp 1 £ app-

So we obtain z F <#6,,, as required. |

LEMMA 37. &, £ A"
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Proof. Since ®,, is Notherian, by Lemma 1 it follows that ®,, F AG. The
remaining axioms of Ag") are valid, by Lemma 36. |

LEMMA 38. &,

Proof. Take a valuation ¢ in ®,, such that ¢(p) = {bo, ¢1}. The same
induction as in the proof of Lemma 36 shows that

©(Br) = {bx}, () = {ck}
This implies ag € ¢(ap), and thus dy € p(eo). [ ]
THEOREM 39. The logic Ay is TKN-noncompact.

Proof. —¢p € Cn(A;), by Lemma 33.
On the other hand, —eq & C%(A;). In fact, suppose S4 + A Fx —eg
for some A € A;. Then A is provable in Grz with a finite set of extra

axioms, i.e. A € Agn) for some finite n. It follows that Agn) Fx —€o, which
contradicts Lemmas 37 and 38. |

6 Relative incompleteness above Grz

Now let us slightly modify the counterexample from the previous Section
to obtain another counterexample. We use the same special formulas as in
Definition 29.

DEFINITION 40. Let
dr =¢eo — 0dp, Ao = Grz + {4, | n > 0}.

LEMMA 41.
(1) @, E 9, for any m < n.
(2) ®,,zF o), for any x # dy and for any m.

Proof. Consider an arbitrary model M = (®,,¢), and assume M,z E &q.
The proof of Lemma 36 shows that for any k, we have either

() wBrk) = {bx}, w(m) = {ck}
(4)  (Br) = A{ex}, o) = {be},

and also

(5) wlaw) = {ar}.

Thus z < ag and either x < by or & < ¢o, which is possible only if z = dj.
So (2) follows readily.

The claim (1) is a trivial consequence of Lemma 36: ®,, F d,, for any
m <. |

or
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LEMMA 42. —gq € Ck(As).

Proof. Suppose there is a Kripke frame F' = (V, R) such that F F As,
but zg F &g for some z¢g € V in some model over F. Then there exists an
infinite ascending chain starting from z, such that z, Rz, and x, F .
In fact, if z, F €,, we also have z,, F §,, (= ¢, — <#,), and thus there
exists Tnpt1 € R(zy) such that z,41 F 0, (and 80 zp41 F ent1).

But then F' is not Notherian, which contradicts F' E Grz. |

LEMMA 43. Let U be a non-principal wltrafilter on w, X = \/(®,,dp).
u
Then X E Az, but X ¥ —ep.

Proof. Let xq be the root of X'. By Lemmas 23 and 41, we have: X',z F 9,,
for any & # wo, for any m. We also have X, z¢ F ¢/, since {n |n > m} C
{n | ®,,do F J,,} and U is non-principal.

Thus X F ;..

As we know, every ®, validates Grz (Lemma 37 ), so X F Grz, by
Lemma 23.

On the other hand, ¢¢ is satisfiable at ®,,,dy for any n, so it is satisfiable
at X, zg, by Lemma 22. Hence X' H —¢y. |

THEOREM 44. A, is relatively incomplete.
Proof. In fact, meg € (Ckx(A2) — Cn(Az2)) by Lemmas 42, 43. ]

We also have
THEOREM 45. A, is TK-noncompact.

Proof. Almost the same as for Theorem 39. We already know that —eg €
Ck(Az). To show that —eq & C%(Az2), it suffices to note that Ag") 7 k€0,
where

A;") =Grz+{d,,|0<m <n}.

This follows from Lemmas 41, 38. |

7 TK-noncompactness for intermediate logics

This Section is an intuitionistic analogue of Section 5. Let us first define
some intuitionistic formulas.

DEFINITION 46.

0 ="(pNq), Co=-(-pAq),
By =Cy = By Vg, C1 =By +CyVp,
B\ ,=C,—>B,vC,_,, C.. =B, —C. VB!

n—1» n—1
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for n > 0.
Also let
AL =B, s NCpyy = By VG,
E, =A,V B, D,=(4, > E,,)— E,,
A3 :H+{D;,L|’Il20}+BT’2,
A =H+{D!, |n>m >0} + Br,.
LEMMA 47. If m <n, then

H+ B, — B, C,, = C,, B, = C,_,, C|

m

!
— B, 10-

Proof. By induction; note that H+ B, — B, ., C,, = C}. .1, B,, =
C)in,Cl = By, 15, by definition. ]

m

DEFINITION 48. The frame &~ := ® [ W, where ® is Fine’s frame
(Definition 34), W~ :={a, | n > 0} U {d,, | n > 0} is called the willow.

The willow is a tree shown in the picture.

» aD L 3 a1 [ ] a2 * a3
dy d d; ds

LEMMA 49. Ej) € Ck(As).

Proof. Analogous to the proof of Lemma 33. For a Kripke frame F' = (V| R)
suppose F' E A3, while ¢(E() # V for some model (F, ). Let ey & ©(E}).
Let us construct a p-morphism from a subframe of F° onto the willow ®~.
This will give us a refutation of Brs in F.
Let
Dy, = o( /\ A;na ;z)a

m<n

An = @\ Ay ABis A Chigy B AClia).

m<n
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Next, for x € V let
N(z):={n|z e R (An)},

and also
Al i={z € V| N(z) = {n}}.

Now let us prove some auxiliary facts.
(1) D, C R Y(Dpi1)-
In fact, for # € D,, we have z If E;, and thus = I} A} — E_,, since

FIF D}, by assumption. So for some y € R(x)
ylF A, &y ¥ By

Sincex € Ap, wehavey - A A ,andsoyco( A AL, E,, ) ="Dni1.
m<n m<n+1
(2) k<n=D,CRD,).
This follows easily from (1) by induction.
(3) DnC R (A).
In fact, © € D,, implies z ¥ E!, and thus = If Al. But then for some
y € R(z)
y Ik B;l+2 A C;L+27 y ¥ B;L-f—l v C7l’l+1'
Since z I A A!,, it follows that y € A,,.

m<n

(4) k<n=DrCR A
This follows from (2) and (3).

(5) Ifz e R7Y(Ay) N R™Y(A), m >k, then z € D, for some n < k.

In fact, assume x € R™1(A,,,) N R~(Ay). Since y If Aj, for any y € Ay,
we also have z If A}, = If A, and so the set S = {l | = I} A}} is
non-empty.

Let n = minS. Then obviously, z IF A Aj. On the other hand, z €

i<n

R™(A,,) implies z |¥ B],,,, and thus = |f B, ,, (sincen +2 <k+2<
m + 1 implies H+ B, ., — B, ;, by Lemma 47).

Since n € S, we also have = If A, and thus z € D,.

(6) If k <n, then DyNA, =2.

In fact, assume k < n. Then Dy C R™Y(D,41), by (2). By definition,

Dpt1 € —9(Epy1) C© —¢(Bpys),

hence
Dy, C R '(Dp+1) € —¢(Bl,5).

On the other hand,
An C @(B;wz) - <P(B;z+3);
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by definition and since H '+ B, , =+ B,,, 3 (Lemma 47). This yields (6).
(7) An C A
In fact, if z € Ay, then n € N(z), and thus by (5), either N(z) = {n} or
x € Dy, for some k < n. The latter contradicts (6).
(8) R (An) = RHAY).

This follows from the inclusions
An CAS C R™'(A,).

9) R 'A)NAL =oifm#n.

This is obvious by definition.

(10) D, N A} = @ for any m, n.

In fact, D, € R71(A;) by (3), and also

Dy C R (Dmy1) € R (Amir)

by (1), (3). Now (10) follows from (9), since either n # m or n # m + 1.

(11) D,ND,, = for m #n.

In fact, we may assume m < n. By definition, we have D,, C p(A4,,) and
D Np(Ay,) = @, whence (11) follows.

Now due to (5), (9), (10), (11), we obtain the following partition of the
set Vp :={z | N(z) # o}:

Vo={JAfulJDn

n>0 n>0
Then let us define a map f: Vo — W™ by putting

| oa, ifzeAf;
f(x)'_{dn if 2 € Dy.

We claim that f is p-morphism from Fy := F' [V} onto ®~.
In fact, if f(z) = an, then € A}, and so obviously, R(z) N A}, = @

for m # n; and also R(z) N D,, = @ for any m, by (9). This means
f(R(z)) = {an} =< (f(2)).

If f(z) = dy, then z € D,, and so R(x) intersects every D,, for m > n,
by (2), and thus every A} for m > n, by (3) and (6). On the other hand,
x & R7Y(A)) = & for m < n.

In fact, = I A’ , by the definition of D,,, while A} C R™'(A,) C
—p(Al,), also by definitions. Thus f(R(z)) =< (f(x)), i.e. f:Fy— .

Since the willow itself is p-morphically mapped onto the tree T35 (see
the picture),
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we have a combined p-morphism g : Fy — T332, and from Lemma 10 it
follows that Brs is refuted in Fy under the valuation 6 such that

0(p) = g~ (1), 6(q) = g (2).

But we also obtain a refutation of Brs in (V, R) under the valuation 6’ such
that
0'(p) = 6(p) U Z and 6'(q) = 6(q) U Z,

where Z := {z € V | N(z) = @} (note that 8’ is intutuionistic since

R(Z) C Z). In fact, A (P, — \ P;j) remains true at z, since p,q are
0<i<2 j#i

true at all points of Z. |

Q

LEMMA 50. &, I+ D}, for any m < n.

Proof. Similar to Lemma 36. Assuming that M = (®,,,¢) is an intuition-
istic Kripke model and M,z If E;,, let us show that = If A} — E, .

Our first claim is that either (1) or (2) below holds in M:

(1) bolkpAg, colk=pAg,

(2) clFpAg, bolk=pAq.

In fact, suppose by I pAgq, co ¥ pAgq. Since either by or ¢ is accessible
from every world of ®,,, we obtain = IF =(p A q), i.e., z I+ Bj. But H |
By — By, .5, by Lemma 47, hence z IF B, ,, which contradicts z ¥ E,.
Thus bg IFpAqorcylFpAg.

In the same way from H - Cy — B;, ., (Lemma 47) it follows that
bo IF =p A q or ¢y IF =p A g. Thus only two options, (1) or (2), are possible.

Now assume that (1) holds. Then we have:

(3) @"(B) = {bi}.

Let us first show that ¢*(B]) C {b1}. In fact, ify € p*(Bj), then y I+ C{,
and thus y £ ¢ (since ¢ If C}), i.e., y € {bo, b1 }. But by I ¢, thus by IF By,
and so y = b;.
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On the other hand, by our assumption, z |} E,,, so we have z |} B;, .,
and thus 2 I} Bj (since H+ B] — B, ,). Therefore ©*(B]) # @, and (3)
follows.

(4) ¥*(Bpy) = {bo}.
In fact, by (1), bo IF p A g. On the other hand, ¢q If p by (1) and by If p
by (3); thus y I p for any y # by. Hence (4) follows.

(5) ¢*(C1) ={a}-
The proof is analogous to (3).

(6) ¢*(Co) = {co}-
The proof is analogous to (4).

(7) forany k, ¢*(B}) = (b}, ¢°(Ch) = {au}.
This follows by induction from (3)—(6) using the equivalence

Y=bp1iffy <bp &y <1 &y £ e

Next, if (2) holds, in the same way we obtain

(8) for amy k, o*(B}) = {ex}, 9*(C}) = {bi}.

Now by the same argument as in the proof of Lemma 36, we obtain (in
both cases, (1) or (2)):

(9) for any k, ¢*(A}) = {ax}.

By our assumption, M,z If E., so © < an, and also & < by4o or
z < ¢py2. So it follows that x < d,,. Next, since m < n, we have
dmy1 € @, (Definition 35). By (9), (7), (8), dimt1 € @(A},, E,, ;) — since

m
dm+1 ﬁ Ao, and dm+1 S Am+1, dm+1 S bm+3, dm+1 S Cm+3- Therefore,

Tl A, = E) . [ ]
LEMMA 51. &, IF A{"

Proof. Since ®,, is of branching 2, by Lemma 1 it follows that ®,, |- Brs.
The axioms D), are valid, by Lemma 50. [ ]

LEMMA 52. ®,,dy ¥ Ej
Proof. Consider a valuation ¢ on ®,, such that
o(p) = {bo}, ¥(q) = {co}.

By the same argument as in the proof of Lemma 50 it follows that for any
k

©*(Br) = {bi}, ¢*(Ch) = {er}, ¢* (A1) = {ar}.
Since dy < ag, do < by, we obtain dy & @(Ejp). |
THEOREM 53. Aj is TK-noncompact.

Proof. E| € Ck(As) by Lemma 49, and for any n E!) ¢ Cx(A™), by
Lemmas 51, 52. Then E} & C%(A3), cf. the proof of Theorem 39. |
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8 Relative incompleteness for intermediate logics

This Section is an intuitionistic analogue of Section 5. Now we modify Ag
to obtain a relatively incomplete logic.

DEFINITION 54. Let
D! :=EyVv D, Ay :=H+{D; |n>0}.

LEMMA 55.
(1) ®,, I DI for any m < n.
(2) ®,,,x |- D for any x # do and for any m.

Proof. (1) follows readily from Lemma 50.

To prove (2), let us show that @,z I+ Ej for any « # dy.

In fact, consider a model M = (®,,,¢) and suppose M,z |} E}. Then
according to the proof of Lemma 50, we obtain that either

@*(By) = {bx}, ¢°(Cp) = {cr}
or

¢*(Bi) = {ex}, ¢°(Ck) = {br},
and also

@*(Ay) = {ax }-

Hence x < ag and either < by or < ¢o, which eventually implies z = dp.
This is a contradiction. |
LEMMA 56. Ej € Ck(A4).

Proof. Similar to Lemma 49. Suppose F' = (V,R) IF A4 and ep & o(E}),
then (F, ), e IF D}, for any n. Next, note that the proof of Lemma 49 does
not fully use the validity of D),; it actually yields that if Vn (F, ¢) Ik D), and
w(E}) #V, then F If Bry. This implies our assertion. |

LEMMA 57. Let (X,z9) = \/(®n,do) be the same as in Lemma 43. Then
u
X IF Ay, but X If Ef.

Proof. By Lemmas 24 and 55, we obtain that every D) is valid at any
x # xg. Since ®,,,dy IF D)), for n > m, from Lemma 24 it also follows that
X,zo Ik D]!.. Since ®,,,dy I} Ej by Lemma 52, we obtain X,z¢ I} Ef,

again by Lemma 24. |
THEOREM 58. A, is relatively incomplete.
Proof. By Lemmas 56, 57, we have Ej € (Cx(A4) — Cn(A4)). [ |

Remark A, is also TK-noncompact, but Aj is slightly simpler.
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9 N-compactness for transitive modal logics

DEFINITION 59. A neighbourhood K4-frame X is called local Ty if the
corresponding topological space X' is local T} (in the sense of [Shehtman,
1998)), i.e. if every point is closed in some its neighbourhood.

LEMMA 60. If X is a topological space and X F AG, then X is local T .

Proof. Suppose the contrary, and let z € X be a point such that G{z}NU #
{z} for any open U > z, i.e.

(Ofz} — {2})NU # .

Hence

() @ e o(ofa}—{a}).

Now Lemma 42 show that XY AG. In fact, take Xo = {z}, X
(S{z} —{z}); then Xy C ©X; by (4), and obviously, Xy # &, XoNX; =
X; C Xp.

R

LEMMA 61.
Every GL-frame is local T .

Proof. By Lemma 60, since X £ AL implies X F AG. The latter is rather
well-known: the modality 07 A = OA A A satisfies Grzecorczyk axiom if O
satisfies Lob axiom; the proof is either syntactical or by applying Kripke
models. |

THEOREM 62. Let A O K4 be a modal logic, S a set of modal formulas.
If S is finitely A-satisfiable in local Ty -frames, then S is A-satisfiable.

Proof. Similar to [Shehtman, 1999, Theorem 3.1]. Suppose S = {4, |n €
w}, B, = A A;. By assumption, there exists a local T} A-frame X,,, a
i=0

valuation 6,, and a point x,, such that (X,,6,),z, E Bhy.

Let V,, be an open subspace of X),, in which z,, is closed. By Lemma 7,
Yn E A, and by Lemma 6, YV,,, ¥y, x, F B, for some valuation 1,,. Now
there are two cases.

Case 1. The set {n | z, is reflexive in V), } is infinite.

Let {ni,n1,---,} be the increasing enumeration of this set; then ny > k,
and obviously, Vn,,¥n,;%n, F Bi. To simplify the notation, let Z; =
Vs Ok =Vny» 2k = Tn,; thus 2 € @ (By).

Take a non-principal ultrafilter &/ in w, and consider the ultrabouget

(Z,2+) = V(Zn,2,) . Then Z = A by Lemma 28.
u
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On the other hand, z;, € ¢y (By) implies
Yn >k z, € on(Ag),

and thus
Vn z, € on(Ag),

since U is non-principal. Now take the valuation ¢ = \/ ¢,. Then by Lemma
u

27, z. € p(Ag), and therefore (Z,¢), 2. E S.

Case 2. The set {n | =z, isreflexive} is finite. ~Then the set
{n | z, is irreflexive} is infinite, and we can repeat the same argument
as in Case 1. ]
THEOREM 63.

(1) Every extension of GL is N-compact.

(2) Every extension of Grz is N-compact.

Proof. Follows readily from Theorem 62 and Lemmas 61, 60. ]

10 Final remarks

General theory of neighbourhood semantics and other modifications in Kripke
semantics in modal logic is far beyond our understanding. However very in-
teresting results on various kinds of semantics were recently obtained by T.
Litak [2005], and this gives a hope for further perspectives.

Let us briefly discuss some topics and open problems related to this paper.

10.1 More counterexamples
Our logics Aj, As are extensions of Grz; it is very likely that similar coun-
terexamples can be constructed above GL and between S4 and Grz (cf.
[Rybakov, 1977] studying the same properties in Kripke semantics). More-
over, the methods from [Rybakov, 1977; Litak, 2002] allow us to construct
a continuum of logics of this kind. However the following question seems
more difficult:

Is it true that for any proper extension A of S4 the interval [S4,A]
contains uncountably many K-incomplete (N-incomplete, etc.) logics?

Let us also recall another open problem (Kuznetsov, 1974):
Is every intermediate logic N-complete?
and two other related problems:

Is every intermediate logic N-compact?
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Is every extension of S4 N-compact?

As for the latter, one can slightly improve Theorem 63, because ultra-
bougets can be defined for a larger class of spaces. In fact, let us call
a point z in a topological space weakly closed if G{x} is a “cluster”, i.e.
y € O{z}iff z € O{y}. A space is weakly local T} if every its point is locally
weakly closed. This class of spaces also allows for a certain ultrabougqet
construction, and therefore Theorem 63 transfers to extensions of Grz,,
the logic of all Kripke frames with clusters of cardinality < n. But this
argument is not sufficient to cover all logics above S4.

10.2 Finitely axiomatisable incomplete logics

In this paper incomplete logics are TK-noncompact, and thus not finitely
axiomatisable. But examples of incomplete finitely axiomatisable (f.a.) log-
ics are also known.

N-incomplete f.a. extension of S4 was first constructed in [Gerson, 1975b],
a somewhat simpler N-incomplete f.a. logic above Grz can be found in [She-
htman, 1980]; it is obtained as Grz + D', for D, defined below.

A K-incomplete intermediate logic is constructed in [Shehtman, 1977]; see
also [Chagrov and Zakharyaschev, 1997, Ch. 6]. The same logic happens
to be relatively incomplete, but the proof is quite complicated [Shehtman,
1980]. For the reader’s conveneience, let us recall some details of this con-
struction. The basic formulas are almost the same as in Definition 46:

By =q—p, Co=p—uq,
By =Co = By Vg, Cy =By = Co Vp,
Bn+1 = Cn — ancnfla Cn+1 = Bn — CnVanl-

Also let
An = Bn+2 A Cn+2 — Bn+1 \ Cn+1,
En = An V Bn+2, Dn = (An — En+1) — En,
A5 :H+D0+BT2.

Then the logic Aj is relatively incomplete; namely,
Ey € CK(A5) — CN(A5).

The first part A5 Fg Ey is proved similarly to Lemma 43. To prove
A5 nEp , we have to construct a As-space ) such that Y I Ey.

This construction is nontrivial. The space ) is obtained from Fine’s
frame ® by adding a continuum of extra points, in order to make Bry valid.
Namely, consider partitions e = (Sy, Sa, S3) of w with infinite members (we
call them just ‘partitions’). A filter F is called subordinate to e if
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e F contains all cofinite subsets of w,
° 7517 752 g fa
o —S3 € F.

One can show that the set of filters subordinate to e is non-empty and
satisfies the conditions of Zorn Lemma. So let F(e) be a maximal element
of this set. Let Y = W UE U &', where £ is the set of all partitions, £’ is
a copy of £ (more precisely, &' = {e' | e € £}, where ¢/ = e x {@&}). Let <
be a certain well-ordering of £. Then the space ) is Y with the topology,
where a set V is open iff

e <(VNW)CV,
e VeelNV){n|a, eV} e F(e),
eVe,felf(eV&flem>feV&fel).

(< denotes the original relation in ®).
The question, whether there exists a simpler (say, countable) counterex-
ample of this kind, remains open. Here is another question:

Do there exist f.a. logics that are N-complete, but K-incomplete?

For instance, one can try to axiomatise the ultrabouqets from Sections
4, 6 or the above defined space ).

10.3 Lowenheim — Skolem property

Classical first order logical consequence does not distinguish between infinite
cardinalities: a theory with an infinite model always has a countable model.
Unlike this, the relation Fg in modal or intuitionistic logic is quite sensible
to cardinality, as the results by S.K. Thomason, A. Chagrov and M. Kracht
show, see [Thomason, 1975]; [Chagrov and Zakharyaschev, 1997, Theorem
6.35); [Kracht, 1999]. What happens in neighbourhood semantics in this
respect, is still unclear:

Does there exist an N-complete modal logic that is not determined by any
countable neighbourhood frame?
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