Секция «Математическая логика, алгебра и теория чисел»

The arithmetic and complexity function of the most significant digits of α^{n}

Научный руководитель - Канель-Белов Алексей Яковлевич
Golafshan Mohammadmehdi
Postgraduate
Московский физико-технический институт, Москва, Россия
E-mail: m.golafshan@phystech.edu

1. Introduction

The arithmetic complexity of an infinite word is the function that counts the number of words of a specific length composed of letters in arithmetic progression (and not only consecutive)

In fact, it's a generalization of the complexity function.

2. Prerequisites

Let \mathcal{A} be a nonempty finite set of symbols, which we call an alphabet. An element $a \in \mathcal{A}$ is called a letter. A word over the alphabet \mathcal{A} is a finite sequence of elements of \mathcal{A}. In particular, we let ϵ denote the empty word. We use the notation \mathcal{A}^{*} for the set of all finite words, and $\mathcal{A}^{+}=A^{*} \backslash\{\epsilon\}$, and $\mathcal{A}^{\mathbb{N}}$ set of all infinite words.

A word \mathbf{U} is a factor (or subword) of a word \mathbf{W} if there exist words $\mathbf{P}, \mathbf{Q} \in \mathcal{A}^{+}$such that $\mathbf{W}=\mathbf{P} \mathbf{U} \mathbf{Q}$. In addition, \mathbf{P} is a prefix and \mathbf{Q} is a suffix of \mathbf{U}.

Definition 1. The factor complexity or complexity function of a finite or infinite word \mathbf{W} is the function $n \mapsto \mathrm{P}_{\mathbf{w}}(n)$, which, for each integer n, give the number $\mathrm{P}_{\mathbf{w}}(n)$ of distinct factors of length n in that word.

Definition 2. Let $\mathbf{w} \in \mathcal{A}^{\mathbb{N}}$ such that $\mathbf{w}=a_{0} a_{1} \cdots a_{n} \cdots$, where $a_{i} \in \mathcal{A}$. We call arithmetic closure of W all

$$
A(\mathbf{w})=\left\{a_{i} a_{i+d} a_{i+2 d} \cdots a_{i+k d} \mid d \geq 1, k \geq 0\right\}
$$

The arithmetic complexity of \mathbf{W} is the function $a_{\mathbf{w}}$ who has n notmatch the number $a_{\mathbf{w}}(n)$ of words in length n in $A(\mathbf{w})$.

According to this definition, in $A(\mathbf{w})$, the parameter k denotes the length of subwords and d is the distance between the letters in the word. For instance, whenever $d=1$, we can say that $a_{\mathbf{w}}(n)=\mathrm{P}_{\mathbf{w}}(n)$, where $\mathrm{P}_{\mathbf{w}}(n)$ is the complexity function of \mathbf{W}.

3. Main parts

Let $\alpha \in \mathbb{R}_{>0} \backslash\left\{10^{x}: x \in \mathbb{Q}\right\}:=\mathbb{R}_{\#}$. Then consider \mathbf{w}_{α} as the word of leading digits of α^{n}. The main result is as follows:

3.1. Independently

It means arithmetic complexity of leading digits of α is independent from α.
Proposition 1. $A_{\mathrm{w}_{\alpha}}$ is independent from α. Hence, $A_{\mathrm{w}_{\alpha}} \subset A_{\mathrm{w}_{\beta}}$ for any $\alpha, \beta \in \mathbb{R}_{\#}$.

3.2. Computing

Proposition 2. $\mathrm{P}_{\mathbf{w}_{\alpha}}=\theta(n)$ and $a_{\mathbf{w}_{\alpha}}=\theta\left(n^{3}\right)$.

Acknowledgement

I would like to greatly thank Julien Cassaign, who gave me this interesting research problem and helped me to formulate it when I was a visitor at the CRIM (International Centre Meetings Mathématiques in Marsseile).

References

1) Rigo, M., Formal Languages, Automata and Numeration Systems 1: Introduction to Combinatorics on Words.
2) Golafshan, M., Kanel-Belov, A., Heinis, A. and Potapov, G., 2021, August. On the complexity function of leading digits of powers of one-digit primes. In 2021 52nd Annual Iranian Mathematics Conference (AIMC) (pp. 13-15). IEEE.
