On modal logics of trees

Valentin Shehtman

October 21, 2020
Intuitionistic (propositional) formulas are in the standard language with a countable set of propositional letters PL and the connectives \lor, \land, \to, \bot.

A superintuitionistic (propositional) logic is a set of intuitionistic formulas containing the standard intuitionistic axioms and closed under the rules

- (MP) $A, A \to B / A$;
- (Sub) A / SA, where S is a propositional substitution.
Kripke semantics

An intuitionistic Kripke frame is a poset $F = (W, \leq)$.

A Kripke model over F is a pair

- $M = (\Phi, \theta)$, where $\theta : PL \rightarrow 2^W$ is an intuitionistic valuation, i.e., for each q,
- $u \in \theta(q) \& u \leq v \Rightarrow v \in \theta(q)$.

The inductive definition of the truth of an intuitionistic formula A at a point u of a model M ($M, u \models A$) is standard.

A formula A is valid on a frame F ($F \models A$) if $M, u \models A$ for every point u of every model M over F.

$\textbf{IL}(F) := \{A \mid F \models A\}$ is the superintuitionistic logic of a frame F.

$\textbf{IL}(C) := \bigcap\{\textbf{IL}(F) \mid F \in C\}$ is the superintuitionistic logic of a class of frames C, or the superintuitionistic logic determined by C.
Logics of the form $\mathbf{IL}(C)$ (or, equivalently, $\mathbf{IL}(F)$) are called (Kripke) complete.

Logics of the form $\mathbf{IL}(C)$, where C is a class of finite frames, are said to have the finite model property (FMP).

Every finitely axiomatizable logic with the FMP is decidable.
DEFINITION (by J. Drugush)
A tree is a poset \((W, \leq)\) with the following properties

- for any \(u\), the set \(\{v \mid v \leq u\}\) is a chain,
- \((W, \leq)\) is a lower semilattice.

REMARK. This is a rather broad definition. In particular, every chain is a tree in this sense.

A forest is a disjoint union of trees. A forest logic is a logic determined by a forest.

Theorem (Drugush, 1984) Every superintuitionistic forest logic has the FMP, moreover, it is determined by a forest consisting of finite trees.
Modal formulas are build from the set PL of proposition letters using the connectives $\rightarrow, \bot, \square$. Other connectives ($\land, \lor, \diamond, \top$ etc.) are abbreviations.

The modal depth $d(A)$ of a modal formula A is defined by induction.

- $d(q) = 0$ for $q \in PL$, $d(\bot) = 0$,
- $d(A \rightarrow B) = \max(d(A), d(B))$,
- $d(\square A) = d(A) + 1$.

A modal logic is a set of modal formulas containing

- the classical tautologies;
- the axiom of \textbf{K}: $\square(p_1 \rightarrow p_2) \rightarrow (\square p_1 \rightarrow \square p_2)$,

and closed under the rules

- (MP) $A, A \rightarrow B / A$;
- (Nec) $A / \square A$;
- (Sub) A / SA, where S is a propositional substitution.

The minimal modal logic is \textbf{K}.
An **Kripke frame** is a non-empty set with a binary relation $F = (W, R)$.

A **Kripke model over F** is a pair $M = (\Phi, \theta)$, where $\theta : PL \rightarrow 2^W$ is a valuation.

The inductive definition of the truth of a modal formula A at a point u of a model M ($M, u \models A$) is standard.

A formula A is **valid** on a frame F ($F \models A$) if $M, u \models A$ for every point u of every model M over F.

$L(F) := \{ A \mid F \models A \}$ is the **modal logic** of a frame F.

$L(C) := \bigcap \{ L(F) \mid F \in C \}$ is the **modal logic** of a class of frames C, or the **modal logic determined by** C.

Logics of the form $L(C)$ (or, equivalently, $L(F)$) are called (Kripke) complete.

Logics of the form $L(C)$, where C is a class of finite frames, are said to have the finite model property (FMP).

FACT 1 Every finitely axiomatizable logic with the FMP is decidable.

A modal logic L is

- **locally tabular** if for any n there exists finitely many formulas in proposition letters p_1, \ldots, p_n, up to equivalence in L ($L \vdash A \leftrightarrow B$).
- **tabular** if it is determined by a single finite frame.

FACT 2 Every tabular logic is locally tabular.

FACT 3 Every locally tabular logic has the FMP.

FACT 4 Every extension of a locally tabular logic is locally tabular.
Definition

For a set of modal formulas Γ, put

$$\Box \Gamma := \{ \Box A \mid A \in \Gamma \}.$$

If $L = K + \Gamma$ for a set of formulas Γ, put

$$\Box \cdot L := K + \Box \Gamma.$$

Lemma

$K + \Gamma \vdash A$ implies $K + \Box \Gamma \vdash \Box A$.

So $K + \Gamma = K + \Delta$ implies $K + \Box \Gamma = K + \Box \Delta$, i.e., $\Box \cdot L$ is well-defined. It turns out that $\Box \cdot L$ inherits many properties of L.
Theorem 1

- If \(L \) is Kripke complete, then \(\Box \cdot L \) is Kripke complete.
- If \(L \) has the FMP, then \(\Box \cdot L \) has the FMP.
- If \(L \) is locally tabular, then \(\Box \cdot L \) is locally tabular.

Since the logic \(\text{Triv} := K + (p \leftrightarrow \Box p) \) is tabular (it is determined by a single reflexive point), we obtain many examples of locally tabular logics:

Corollary

The logics \(K + \Box^n (p \leftrightarrow \Box p) \) (and all their extensions) are locally tabular.
Trees

Definition

A tree is a rooted frame, in which every point, but the root, has a single predecessor. I.e., this is a frame \((W, R)\) with a point \(u\) such that

- \(W = \bigcup_{n \geq 0} R^n(u)\),
- \(\forall x \neq u \exists! y \ yRx\).

A reflexive tree is a reflexive closure of a tree. Similarly we define transitive trees, symmetric trees, etc.

This can be done for any first-order condition on frames expressed by a Horn sentence.
Theorem 2
A modal logic determined by any class of reflexive trees has the FMP.

Proof
(Sketch.) It suffices to consider $L(F)$ for a single reflexive tree F. Suppose $F, x \not\models A$ for some point x. Let $G = F \uparrow x$ be the subtree of F starting at x, and let $n = d(A)$. Consider its truncation $G^{(n)} = G \upharpoonright R^n(x)$. Then $G^{(n)}, x \not\models A$; this is proved for example, by playing a bisimulation game between a countermodel M for A in G and the truncated model $M^{(n)}$, so M, x and $M^{(n)}, x$ are n-bisimilar. Thus every formula refuted in F is refuted in some $G^{(n)}$.
On the other hand, there is a p-morphism $f : G \rightarrow G^{(n)}$ such that
• $f(u) = u$ for $u \in G^{(n)}$,
• $f(u) = v$ for xR^nvR^mu (there are unique such v and m).
Reflexive trees (continued)

Proof

(Continued) Thus

\[
L(F) \subseteq L(G) \subseteq L(G^{(n)}).
\]

It follows that

\[
L(F) = L(\{(F \uparrow x)^{(n)} \mid x \in F, n \geq 1\}).
\]

Finally observe that every logic \(L((F \uparrow x)^{(n)}) \) is locally tabular. This follows from a Theorem in

It states that every logic axiomatized by Chagrov’s formula (forbidding paths of different points of length \(> n \)) is locally tabular. Therefore, \(L(F) \) has the FMP.
Serial trees

A serial frame is a frame without endpoints (where $R(x) = \emptyset$). Equivalently, F is serial iff $F \models \Diamond \top$.

Theorem 3

A modal logic determined by any class of serial trees has the FMP.

Proof

(Sketch.) Again it suffices to consider $\mathbf{L}(F)$ for a single serial tree F. The method is almost the same as in Theorem 2. Now we take a truncation $G^{(n)}$ and make all its endpoints reflexive. This gives us a serial frame $G^{(n)}\bullet$, and still $G^{(n)}\bullet, x \not\models A$.

Since G is serial, we have the same p-morphism $f : G \rightarrow G^{(n)}\bullet$.

Finally note that $G^{(n)}\bullet \models \square^n (p \leftrightarrow \square p)$, so by Theorem 1, $\mathbf{L}(G^{(n)}\bullet)$ is locally tabular, and we can apply the same argument as in Theorem 2.
More examples of FMP

Theorem 4

The logic of every class of trees validating

$$\Diamond \top \rightarrow \Diamond^2 \top \land \Diamond \Box \bot$$

has the FMP.

Theorem 5

A modal logic determined by any class of reflexive symmetric trees has the FMP.
Counterexample

Theorem 6

There exist a countable tree F such that $L(F)$ lacks the FMP.

Proof

(Sketch, joint with A. Alexeev). Consider the formula

$Alt_1 := \Diamond p \rightarrow \Box p$. It is well-known that $(W, R) \models Alt_1$ iff every x has at most one successor.

Let

$L_0 := \mathbf{K} + \Box Alt_1 + \{Alt_1 \lor (\Diamond^n \Box \bot \rightarrow \Diamond^{n+1} \Box \bot) \mid n \geq 1\}.$

Then

- Every finite frame validating L_0 validates $Alt_1 \lor \Box \Diamond \top$.
- $L_0 \not\models Alt_1 \lor \Box \Diamond \top$: there is a corresponding infinite tree F.

So L_0, as well as $L(F)$, lacks the FMP.
Some questions

1. Does there exist a transitive tree F validating GL such that $\text{L}(F)$ lacks the FMP? (Conjecture: yes).
2. Does the modal logic of every reflexive transitive tree enjoy the FMP?
3. Do there exist continuum many superintuitionistic forest logics?