Интуиционистская логика

В. Е. Плиско

15 октября 2019 г.

Интуиционистское исчисление высказываний

В 1908 г. появилась работа голландского математика Л. Э. Я. Брауэра «Недостоверность логических принципов». В ней отмечалось, что правила классической логики, дошедшие до нас от Аристотеля (IV век до н. э.), абстрагированы от обращения с конечными совокупностями. Забывая об этом, впоследствии эту логику ошибочно приняли за нечто первичное по отношению к математике и стали применять ее к математике бесконечных множеств. Принципом классической логики, который Брауэр не принимает для бесконечных множеств, является закон исключенного третьего, выражаемый формулой $P \vee \neg P$. Брауэр выдвинул программу построения математики и логики на так называемых интуиционистских принципах. При построении интуициониствой логики исходным логическим понятиям придается несколько иной смысл, чем в традиционной, классической логике. В традиционной логике высказывание понимается как предложение, которое может быть истинным или ложным, так что истинностное значение есть атрибут всякого высказывания. С точки зрения интуиционизма, высказывание считается истинным, если имеется его доказательство, или обоснование. В контексте такой трактовки истинности высказывания понимаются традиционные логические операции. Высказывание $A \wedge B$ считается истинным тогда и только тогда, когда истинны оба высказывания A и B, т. е. мы располагаем обоснованием каждого из них. Высказывание $A \lor B$ считается истинным тогда и только тогда, когда истинно хотя бы одно из высказываний A и B, т. е. мы располагаем обоснованием высказывания A или обоснованием высказывания B. Высказывание $A \to B$ считается истинным тогда и только тогда, когда имеется общий метод, позволяющий любое обоснование высказывания A преобразовать в обоснование высказывания B. Пусть P(x) — некоторое свойство, которым могут обладать объекты из данного множества M. Тогда высказывание $\exists x P(x)$ считается истинным, если для некоторого $a \in M$ мы имеем обоснование высказывания P(a). Высказывание $\forall x P(x)$ считается истинным, если имеется общий метод, позволяющий для любого $a \in M$ получить обоснование высказывания P(a). Высказывание A считается ложным, если удалось доказать высказывание $A \to \bot$, где ⊥ — некоторое абсурдное высказывание, не имеющее обоснования. Высказывание $A \to \bot$ обозначается $\neg A$.

Первая попытка аксиоматизации интуиционистской логики высказываний была предпринята А. Н. Колмогоровым в 1925 г. Позднее были предложены другие системы аксиом. Они эквивалентны между собой в том смысле, что из них выводимы одни и те же формулы, и эквивалентны системе Гейтинга:

```
\begin{split} &\text{ III. } A \rightarrow (B \rightarrow A);\\ &\text{ II2. } (A \rightarrow B) \rightarrow ((A \rightarrow (B \rightarrow C)) \rightarrow (A \rightarrow C));\\ &\text{ II3. } A \wedge B \rightarrow A;\\ &\text{ II4. } A \wedge B \rightarrow B;\\ &\text{ II5. } A \rightarrow (B \rightarrow A \wedge B);\\ &\text{ II6. } A \rightarrow A \vee B;\\ &\text{ II7. } B \rightarrow A \vee B;\\ &\text{ II8. } (A \rightarrow C) \rightarrow ((B \rightarrow C) \rightarrow (A \vee B \rightarrow C));\\ &\text{ II9. } (A \rightarrow B) \rightarrow ((A \rightarrow \neg B) \rightarrow \neg A);\\ &\text{ II10. } A \rightarrow (\neg A \rightarrow B). \end{split}
```

Эти схемы аксиом вместе с правилом modus ponens

$$\frac{A, A \to B}{B} \text{ (MP)}$$

задают интуиционистское исчисление высказываний (ИИВ).

Имеет место следующая теорема Гливенко.

Теорема 1. Если A — тавтология, то формула $\neg \neg A$ выводима в ИИВ.

Задача.

Доказать, что следующие формулы выводимы в ИИВ:

- 1. $A \rightarrow A$;
- 2. $(A \rightarrow \neg A) \rightarrow \neg A$;
- 3. $A \lor A \to A$;
- 4. $(\neg A \lor B) \to (A \to B)$;
- 5. $\neg (A \lor B) \to (\neg A \land \neg B)$;
- 6. $\neg (A \rightarrow B) \rightarrow \neg B$;
- 7. $(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$;
- 8. $\neg \neg (A \lor \neg A)$.

Модели Крипке для логики высказываний

Модель Крипке для логики высказываний — это набор $\mathcal{K}=(K,\preceq,\Vdash)$, где (K,\preceq) — частично упорядоченное множество, называемое шкалой Крипке, а \Vdash — соответствие между K и множеством всех переменных такое, что если $\alpha \Vdash P$ и $\alpha \preceq \beta$, то $\beta \Vdash P$. Соответствие \Vdash называется оценкой. Элементы множества K можно трактовать как «моменты времени», причем $\alpha \preceq \beta$ означает, что момент α предшествует моменту β . Выражение $\alpha \Vdash P$ читается « α вынуждает P» или «P истинно в момент α ». Интуитивно $\alpha \Vdash P$ означает, что в момент α утверждение P является доказанным, а условие, что если $\alpha \Vdash P$ и $\alpha \preceq \beta$, то $\beta \Vdash P$, выражает принцип сохранения истинности.

На основе соответствия \Vdash определяется соответствие между множеством K и множеством всех формул, также обозначаемое \Vdash . Соответствие $\alpha \Vdash A$ задается индукцией по построению формулы A. Для переменной A оно уже определено. Далее полагаем:

```
\begin{split} \alpha \Vdash (A \land B) & \rightleftharpoons [\alpha \Vdash A \land \alpha \Vdash B]; \\ \alpha \Vdash (A \lor B) & \rightleftharpoons [\alpha \Vdash A \lor \alpha \Vdash B]; \\ \alpha \Vdash (A \to B) & \rightleftharpoons \forall \beta \, [\alpha \preceq \beta \Rightarrow (\beta \not\Vdash A \lor \beta \Vdash B]; \\ \alpha \Vdash \neg A & \rightleftharpoons \forall \beta \, [\alpha \prec \beta \Rightarrow \beta \not\Vdash A]. \end{split}
```

Говорят, что формула A истинна в модели Крипке $\mathcal{K} = (K, \preceq, \Vdash)$, если $(\forall \alpha \in K) \alpha \Vdash A$. Имеет место следующая теорема.

Теорема 2. Если пропозициональная формула A выводима в ИИВ, то A истинна в любой модели Крипке.

Верно и обратное утверждение.

Теорема 3. Если пропозициональная формула A невыводима в ИИВ, то существует контрмодель Крипке для A.

Более того, для всякой невыводимой в ИИВ формулы можно построить конрмодель Крипке с конечной шкалой.

Теорема 2 позволяет доказывать невыводимость в ИИВ тех или иных формул путем построения контрмоделей Крипке для них.

Пример. Докажем, что формула $P \vee \neg P$ не выводится в ИИВ, построив для нее контрмодель Крипке. Положим $K = \{\alpha, \beta\}$, причем $\alpha \leq \beta$. Пусть $\alpha \not\Vdash P$, $\beta \Vdash P$. Нетрудно проверить, что $\alpha \not\Vdash P$, так что $\alpha \not\Vdash P \vee \neg P$.

Задача.

Построить контрмодели Крипке для следующих формул:

- 1. $\neg \neg P \rightarrow P$:
- 2. $\neg P \lor \neg \neg P$:
- 3. $((P \rightarrow Q) \rightarrow P) \rightarrow P)$;
- 4. $\neg (P \land Q) \rightarrow (\neg P \lor \neg Q)$;
- 5. $\neg (P \rightarrow Q) \rightarrow P$.

Интуиционистское исчисление предикатов

Пусть фиксирована сигнатура Ω , содержащая лишь константы и предикатные символы. Интуиционистское исчисление предикатов (ИИП) в сигнатуре Ω задается следующими схемами аксиом:

- $A \to (B \to A)$; 1.
- $(A \rightarrow B) \rightarrow ((A \rightarrow (B \rightarrow C)) \rightarrow (A \rightarrow C));$ 2.
- 3. $A \wedge B \rightarrow A$;
- 4. $A \wedge B \rightarrow B$;
- 5. $A \rightarrow (B \rightarrow A \land B)$;
- 6. $A \to A \vee B$;
- 7. $B \rightarrow A \vee B$;
- 8. $(A \rightarrow C) \rightarrow ((B \rightarrow C) \rightarrow (A \lor B \rightarrow C));$
- $(A \to B) \to ((A \to \neg B) \to \neg A);$ 9.
- 10. $\stackrel{\frown}{A} \rightarrow (\neg \stackrel{\frown}{A} \rightarrow \stackrel{\frown}{B});$
- 11. $\forall v A(v) \rightarrow A(t)$;
- 12. $A(t) \rightarrow \exists v \, A(v)$.

В схемах 11 и 12 A(v) — формула языка Ω , v — переменная, t — терм, свободный для v в A(v).

Правила вывода ИИП:

- (I) $A \to B \over B$ (modus ponens; MP); (II) $A \to B \over \exists v A \to B$ (удаление квантора существования); (III) $A \to B \over \exists v A \to B$ (удаление квантора всеобщности).

В правилах (II) и (III) B не содержит свободных вхождений v.

Задача.

Доказать, что следующие формулы выводимы в ИИП:

- 1. $\neg \exists x P(x) \rightarrow \forall x \neg P(x)$;
- 2. $\exists x \neg P(x) \rightarrow \neg \forall x P(x)$;
- 3. $\exists x (P \to Q(x)) \to (P \to \exists x Q(x)).$

Модели Крипке для логики предикатов

Модель Крипке для языка Ω имеет вид $\mathcal{K}=(K,\preceq,D,\Vdash),$ где

 (K, \preceq) — частично упорядоченное множество (шкала Крипке),

D— функция, каждому $\alpha \in K$ сопоставляющая непустое множество $D_\alpha,$ причем $D_\alpha \subseteq D_\beta,$ если $\alpha \preceq \beta.$

Если Ω содержит константу c, то ей сопоставляется объект \bar{c} , который принадлежит любому множеству D_{α} для $\alpha \in K$. В дальнейшем c отождествляется с элементом \bar{c} .

Наконец, \Vdash — некоторое соответствие между множеством K и множеством всех атомов вида $P(a_1,\ldots,a_n)$, где P есть (n-местный) предикатный символ сигнатуры Ω , а a_1,\ldots,a_n — элементы множества $\bigcup_{\alpha\in K} D_\alpha$, обладаю-

щее тем свойством, что если $\alpha \in K$, $P(a_1,\ldots,a_n)$ — атом указанного вида, и $\alpha \Vdash P(a_1,\ldots,a_n)$, то $\{a_1,\ldots,a_n\}\subseteq D_\alpha$, и если $\alpha \preceq \beta$, то $\beta \Vdash P(a_1,\ldots,a_n)$. Соответствие \Vdash называется оценкой атомов в данной модели Крипке. Как и в случае моделей Крипке для логики высказываний, $\alpha \Vdash P(a_1,\ldots,a_n)$ читается « α вынуждает $P(a_1,\ldots,a_n)$ » или « $P(a_1,\ldots,a_n)$ истинно в момент α ».

Интуитивный смысл моделей Крипке для логики предикатов аналогичен смыслу моделей Крипке для логики высказываний. Элементы множества K можно трактовать как моменты времени. Множество D_{α} можно понимать как множество объектов, построенных к моменту α или доступных для исследования в этот момент. Условие

$$\alpha \leq \beta \Rightarrow D_{\alpha} \subseteq D_{\beta}$$

означает, что имеющиеся в данный момент объекты в будущем не исчезают. Интуитивно $\alpha \Vdash P(a_1, \ldots, a_n)$ означает, что к моменту α доказано утверждение $P(a_1, \ldots, a_n)$, причем доказанные утверждения остаются таковыми и в будущем, так что имеет место принцип сохранения истинности.

Соответствие \Vdash между K и множеством атомов расширяется до соответствия \Vdash между K и множеством высказываний следующим образом. Пусть $\alpha \in K$, а A — высказывание сигнатуры Ω , расширенной за счет констант для обозначения всех элементов D_{α} . Соответствие $\alpha \Vdash A$ задается индукцией по логической длине A. Для атомов оно уже определено. Далее полагаем:

$$\alpha \Vdash (A \land B) \rightleftharpoons [\alpha \Vdash A \text{ и } \alpha \Vdash B];$$

$$\alpha \Vdash (A \lor B) \rightleftharpoons [\alpha \Vdash A \text{ или } \alpha \Vdash B];$$

$$\alpha \Vdash (A \to B) \rightleftharpoons (\forall \beta \succeq \alpha) [\beta \not\Vdash A \text{ или } \beta \Vdash B];$$

$$\alpha \Vdash \neg A \rightleftharpoons (\forall \beta \succeq \alpha) \beta \not\Vdash A;$$

$$\alpha \Vdash \exists v \, A(v) \rightleftharpoons (\exists a \in D_{\alpha}) \alpha \Vdash A(a);$$

$$\alpha \Vdash \forall v \, A(v) \rightleftharpoons (\forall \beta \succeq \alpha) (\forall a \in D_{\beta}) \beta \Vdash A(a).$$

Здесь $\beta \succeq \alpha$ означает $\alpha \preceq \beta$, а A(a) есть результат подстановки константы a вместо переменной v в формулу A(v).

Говорят, что формула A истинна в модели $\mathcal{K} = (K, \leq, D, \Vdash)$, и пишут $\mathcal{K} \models A$, если для любого $\alpha \in K$ имеет место $\alpha \Vdash A$. Если формула A не истинна в модели Крипке \mathcal{K} , т. е. $\mathcal{K} \not\models A$, то \mathcal{K} называют контромоделью для A.

Имеет место следующая теорема о корректности ИИП относительно моделей Крипке:

Теорема 4. Если замкнутая формула языка Ω выводима в ИИП, то она истинна в любой модели Крипке для языка Ω .

Эта теорема позволяет доказывать невыводимость в ИИП тех или иных формул путем построения для них контрмоделей Крипке.

Пример. Докажем, что формула $\neg\neg\forall x\,(P(x)\vee\neg P(x))$ не выводится в ИИП, построив контрмодель для этой формулы. Положим $K=\mathbb{N}$, причем $m \leq n \rightleftharpoons m \leq n$ для любых $m,n \in \mathbb{N}$. Пусть $D_n=\{0,\ldots,n\}$. Положим $m \Vdash P(n) \rightleftharpoons m > n$. Допустим, что

$$0 \Vdash \neg \neg \forall x (P(x) \lor \neg P(x)). \tag{1}$$

В силу определения отношения \Vdash для отрицания (1) означает, что

$$(\forall m \in \mathbb{N}) \, m \not \Vdash \neg \forall x \, (P(x) \vee \neg P(x)).$$

В частности, $0 \not\models \neg \forall x (P(x) \lor \neg P(x))$. Это означает, что

$$m \Vdash \forall x (P(x) \lor \neg P(x))$$

для некоторого $m \in \mathbb{N}$. Отсюда и из определения соответствия \Vdash для квантора всеобщности следует $m \Vdash P(m) \lor \neg P(m)$, так как $m \in D_m$. В силу определения отношения \Vdash для дизъюнкции это означает, что либо 1) $m \Vdash P(m)$, либо 2) $m \Vdash \neg P(m)$. Однако ни то, ни другое не имеет места. Действительно, условие 1) не выполняется в силу определения отношения \Vdash для атомов. Докажем, что условие 2) также не выполняется. Допустим противное, т. е. $m \Vdash \neg P(m)$. В силу определения отношения \Vdash для отрицания это означает, что $(\forall n \geq m) \ n \not\Vdash P(m)$. Но это не так, ибо $m+1 \Vdash P(m)$. Таким образом, предположение (1) приводит к противоречию. Значит,

$$0 \not\Vdash \neg \neg \forall x (P(x) \lor \neg P(x)),$$

и построенная модель Крипке является контрмоделью для рассматриваемой формулы.

Имеет место теорема о полноте ИИП относительно моделей Крипке.

Теорема 5. Если замкнутая формула A невыводима в ИИП, то существует контрмодель Kрипке для A.

Задача.

Построить контрмодели Крипке для следующих предикатных формул:

- 1. $\neg \forall x P(x) \rightarrow \exists x \neg P(x);$
- 2. $(P \to \exists x \, Q(x)) \to \exists x \, (P \to Q(x));$
- 3. $(\forall x (P(x) \lor \neg P(x)) \land \neg \neg \exists x P(x) \rightarrow \exists x P(x).$

Дополнительные материалы:

 $http://lpcs.math.msu.su/^plisko/intlog\\ https://www.youtube.com/playlist?list=PLFAUjUzyuqi-pF3OaoGioIGWLofTbjUrB$